Special Edltlen 1*5-%
R i;=09tober 2010 ”%%Eiufiii;f i

Welcome
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command

Command

From
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line

Line

Tz)0]2 OF Copjrag)r

The Chief Editor
Part
Part
Part
Part
Part
Part
Part
Part
Part
Part
Part
Part

Interface:
Interface:
Interface:
Interface:
Interface:
Interface:
Interface:
Interface:
Interface:
Interface:
Interface:

Interface:

0o Jd o O & W DD

=
o

11
12

16
24
32
40
49
58
68
77
85
95

-y

-

1. Allthe contents of the NEW PCLinuxOS Magazine are only
for general information and/or use. Such contents do not
constitute advice and should not be relied upon in making (or
refraining from making) any decision. Any specific advice or
replies to queries in any part of the magazine is/are the
person opinion of such experts/consultants/persons and are
not subscribed to by the NEW PCLinuxOS Magazine.

2. The information in the NEW PCLinuxOS Magazine is
provided on an "AS IS" basis, and all warranties, expressed
or implied of any kind, regarding any matter pertaining to any
information, advice or replies are disclaimed and excluded.

3. The NEW PCLinuxOS Magazine and its associates shall not
be liable, at any time, for damages (including, but not limited
to, without limitation, damages of any kind) arising in contract,
rot or otherwise, from the use of or inability to use the
magazine, or any of its contents, or from any action taken (or
refrained from being taken) as a result of using the magazine
or any such contents or for any failure of performance, error,
omission, interruption, deletion, defect, delay in operation or
transmission, computer virus, communications line failure,
theft or destruction or unauthorized access to, alteration of, or
use of information contained on the magazine.

4. No representations, warranties or guarantees whatsoever are
made as to the accuracy, adequacy, reliability, completeness,
suitability, or applicability of the information to a particular
situation.

5. Certain links on the magazine lead to resources located on
servers maintained by third parties over whom the NEW
PCLinuxOS Magazine has no control or connection, business
or otherwise. These sites are external to the NEW
PCLinuxOS Magazine and by visiting these, you are doing so
of your own accord and assume all responsibility and liability
for such action.

Material Submitted by Users

A majority of sections in the magazine contain materials submitted by
users. The NEW PCLinuxOS Magazine accepts no responsibility for

the content, accuracy, conformity to applicable laws of such material.

Entire Agreement

These terms constitute the entire agreement between the parties with
respect to the subject matter hereof and supersedes and replaces all
prior or contemporaneous understandings or agreements, written or
oral, regarding such subject matter.

()

Waleora Fro) Tri2 Crizar =dicor

Last year, when we started the Command Line Interface Intro series, | had no idea that it would run for a full
year. It also exceeded all and any expectations that | had at the time. Pete Kelly, a.k.a. critter, produced a top
notch series, one that literally walks the reader, step-by-step, through learning the Linux command line. It's
only fitting that we produce this special edition of The NEW PCLinuxOS Magazine. Pete not only did an
outstanding job on the series, but the end result is a series that any user who wants to learn the Linux
command line can use as a reference and tutorial. Put together into one comprehensive volume should make
it easier to follow along as you go through the series, allowing you to refer back to previous parts of the series
as needed.

So why the command line? Sure, the vast majority of modern, desktop Linux distributions have a very
comprehensive graphical user interface (GUI). Despite that, there are a number of reasons to learn the Linux
command line.

First of all, it helps you to better learn how Linux works. There is something very basic about working from the
command line, and it somehow gives you greater insight into the inner workings of Linux. At least, that's how |
feel whenever | work from the command line.

Secondly, it's good to know more than one way to do things in Linux. What are you going to do if, say some
day, your GUI desktop doesn't load, and you are forced to use the command line to fix things so you can get
your GUI desktop back? Without knowledge of the Linux command line, you won't know what to do, or how to
do it.

Third, as difficult as it may be to comprehend, some things are not only done more easily from the command
line, but they can also be accomplished a whole lot faster.

Fourth, if you have any interest in learning programming or scripting in Linux, it is imperative that you learn the
Linux command line. Of course, there are many other reasons to learn the Linux command line.

There is no doubt that the GUI of modern desktop Linux distributions make using Linux easier and have
opened up Linux to many more users who might not otherwise give Linux a try. There are even Linux users
today who work almost exclusively in the GUI of the Linux desktop. But treat yourself to learning the Linux
command line. You will undoubtedly thank yourself in the end. It's certainly not as hard as you might think it is.

Use this series of articles by critter to set yourself on a voyage of discovery. At the end of the 12th and final
installment of this series, critter lists some additional resources you may be interested in checking out, should
you decide to learn more about the Linux command line.

Paul Arnote, PCLinuxOS Magazine Chief Editor

The

PC

The PCLinuxOS name, logo and colors are the trademark
of Texstar.

¢S

Macazine

The NEW PCLinuxOS Magazine is a monthly online
publication containing PCLinuxOS-related materials. It is
published primarily for members of the PCLinuxOS
community. The Magazine staff is comprised of volunteers
from the PCLinuxOS community.

Visit us online at http://www.pclosmag.com
This release was made possible by the following volunteers:

Chief Editor: Paul Arnote (parnote)

Assistant Editors: Andrew Strick (Stricktoo), Meemaw
Consultants: Archie Arevalo, Tim Robinson

Artwork: Sproggy, Timeth

Magazine Layout: Paul Arnote, Meemaw, ms_meme
HTML Layout: Galen Seaman

Staff:

Neal Brooks
Galen Seaman
Patrick Horneker
Guy Taylor
Andrew Huff
Peter Kelly

ms_meme

Mark Szorady
Macedonio Fernandez
Meemaw

Gary L. Ratliff, Sr.
Darrel Johnston

The PCLinuxOS Magazine is released under the Creative
Commons Attribution-NonCommercial-Share-Alike 3.0
Unported license. Some rights are reserved.

Copyright © 2010.

Corrirrziriel

by Peter Kelly (critter)
So what is this CLI thing anyway?

These tutorials are based on a basic, fully updated
installation of PCLinuxOS using the KDE desktop. There
may be minor differences between different installations
and desktop environments but the fundamental concepts
are similar.

Most people who are new to Linux are often
confused when seeking help and are told:

“In a terminal type...”, or
“This can be done using the CLI...".

Terminal? CLI? Console? What does it mean? Well
in this context the three terms can be used
interchangeably. CLI is short for command line
interface and is another way of interacting with your
computer, as opposed to the usual GUI or graphical
user interface found in desktop environments like
KDE or Windows. So why bother? Well for the most
part, you don't have to bother. The GUI will do
almost everything that anybody could possibly need
on a day to day basis. The keyword here though is
almost. There are times when you need to do
something that there is no button to click or menu
item to select to perform it.

Anything you do in a GUI can be done using the
CLlI, plus a whole lot more. The down side is that
you have to learn what commands to type. Not all
commands, there are after all hundreds of them, but
a basic working knowledge of a few dozen of the

more popular ones will make you a proficient CLI
user.

Getting started
Want to dip a toe in the water? Follow me.

Open PCLinuxOS Control Center (PCC).

Under the System heading, click “Manage users on
system” and create a new user. Call it whatever you
like - my user is called jane. Log out and then log in
as the new user. Now, if we manage to screw up,

delete the user and re-create it. No damage done,
and your account is safe.

Click the menu button and under System>Terminals
select Konsole — Terminal Program. You could select
anything under that menu, but this is the most
suitable for what | have in mind.

A window opens with a black background and
something like this:

This is called the prompt, because it is prompting
you to type something. It is also giving some
information: The current user is jane who is at a

TNENNLETdAGLEN N OREA

computer with the “hosthame” home (If you haven't
changed the hostname of your computer your
prompt will say localhost). The ~ character (called
tilde) is shorthand for “my home directory” which is
where jane is in the filesystem. The $ denotes jane
is an ordinary user not the super-user root, whose
prompt usually ends with a hash #. This is the
default in PCLinuxOS but can be changed to include
almost anything you want, for example, some people
like to have the current date in the prompt.

Looking around

So the prompt tells us that jane is in her home
directory. Let's change that.

Type the following and press enter: cd /usr/bin.
Make sure that you use only lower case letters, as
Linux is case-sensitive.

The prompt now looks like this:

home bin]s |

The command cd means change directory and the
lusrlbin part is telling the command which directory
to change to. But the directory shown in the prompt
says bin not lusr/bin, and there are lots of
directories named bin in the Linux file system.

It is very important that we know exactly where we
are if we are going to start mucking about with things
—no nice graphics here. To check, type in the

(4)

command pwd, short for “print working directory”,
and press enter.

ome bin]$ pwd
.

ome bin]s [

This confirms where we are and supplies a new
prompt ready for you to type the next command

Let's go back, type cd and press enter (you know to
press enter by now). Typing the command cd on its
own is a quick way of getting home from anywhere
in the file system.

Nothing very impressive so far, and | said that you
can do anything in here just like in a GUI. You can.

Type firefox. See, you still have access to all of your
graphical applications while you are running a
terminal in KDE. But now you can't type anything on
the command line, so close firefox and you get the
use of the command line again in your terminal (or
console if you prefer). I'll show you later how to run a
command and still have access to the command
line.

Let's have a look around in this directory.

Type Is (it means list directory contents, in this
example the contents of janes home directory).

This is a very brief and not very informative listing of
the directory contents. If we want more information,
then we can use a modified version of the Is
command. For example, type Is -I (notice the
space). Now type Is -a. See the difference? The -a
and -l are known as options, and most Linux
commands accept a host of options.

The -a (all files) gives you fewer details but more
files. By default, any file that begins with a period is
hidden. This has nothing to do with security but
merely a convenience to reduce clutter.

The -l option means provide a long listing. You can
even combine options to get the results that you
want.

Try Is -al.

How do you remember these options? You don't
have to. For almost any command, typing the name
of the command followed by --help will show you
what is available. In practice, you will use only a few
of the available options.

Type Is --help.

That went past too quickly to read so we need to
slow it down.

Type Is --help | less.

The less command shows less information in one
go. (The | is the vertical bar character above the
backslash character. At least that's where it is on my
keyboard). I'll explain later what this is all about. You
can press enter or the space-bar for a new page and

the page up/page down keys work. Press 'g' to get
out.

To summarize then, Linux commands take the
following general form: {cmd} {options}
{argument}

* cmd is the name of the command, e.g. Is.

* gptions, such as -a or -al, are ways of modifying
the output or result of the command, and are usually
prefixed with one or more dashes.

* argument is information that you supply to the
command, such as a directory to go to like /home.

Armed with the preceding information, you are ready
to go exploring.

Logged in as a normal user you, can do no system
damage with the following commands, which merely
display information or move your current position
within the filesystem. Some of the information
displayed may look a bit cryptic at the moment, but |
will explain it all when we have been through a few
more commands.

Is

cd

pwd

free display memory usage

df display disk usage

date print the time and date to screen
cal print a calendar on the screen

(5)

Making changes

This is where we have to be a little more careful, as
we will be making changes to files and directories
and deleting some. But that is why we created this
dummy account. (You did that, right?)

cd enter puts us back in the home directory from
wherever we were in the file system.

Create a new directory named mydirl with the
command mkdir mydirl. Check that it has been
created with the Is command.

Now let's create a new file. One way to do this is to
use the command touch.

touch myfilel

This isn't what touch was designed for, but is what it
is used for mostly these days. Is will show the new
file, but it isn't in our new directory, so let's move it.

mv myfilel mydirl
Is The file has gone.

Is mydirl There it is in our new directory so move
to our new directory.

cd mydirl

file myfilel shows the file type to be empty

[jane(
myTil

Remember the vertical bar character that we used
with the less command? It took the output from the
Is —-help command and fed it to the less command
so that we could read it in our own time. The >
(greater than) character can be used in a 'similar’
way.

Is -1/ will give a listing of the root of the file system.

Is -1 I > myfilel

Here the output is captured before it is printed to
screen, and then stuffed into our file. This is part of
something called redirection, which we will go into in
more depth in a later episode.

file myfilel now shows the file to be of type 'ASCII
text'. To look at the contents we can use the
command cat (short for concatenate).

cat myfilel
I hate typing in long commands

So do most people. You may have noticed that Linux
commands tend to be short (e.g. Is, cat, df, cd, rm).
Linux has its roots in Unix, an operating system
dating back 40 years, to the days when there was no
graphical interface and all work had to be done on
the command line. Over the years, people have
developed many ways to reduce the amount of

at myfilel

rd/

+found/

typing and speed up regularly performed tasks, as
you will discover.

When you run a terminal session, such as Konsole,
under Linux (notice how the terms terminal , console
and CLI are blending together), you are actually
running an application known as a shell. The shell
takes what you type and interprets it into something
that the computer can work with. There are lots of
shell programs available for Unix/Linux. The original
shell was known as the Thompson shell, or sh on
the command line. This was developed by Stephen
Bourne to include many more features, but was still
known as sh. The most popular shell today is called
'bash' (bourne again shell). The default shell in
PCLinuxOS is bash.

You can check this by typing echo $SHELL on the
command line.

Bash is a very powerful program that can save you

no end of typing.
(s)

Press the up arrow a few times and you will see the
last few commands that you typed at the prompt,
ready to be edited or executed. The down arrow
takes you back down. Type history and you get a
numbered list of all the commands that you have
used in this session

type ! (The number) enter, e.g. 138, and that
command is echoed to the screen and then
executed.

Another time saver is a feature known as ‘command
line completion'. It works like this:

Type hi and press the tab key.

You get prompted with a list of all the commands you
can execute that begin with the letters "hi' .

Press the 's' key and tab and the command line
completes the command history, waiting for you to
add any options or arguments, then enter to execute
the command. This not only saves on typing, but
serves as a reference when you can't quite
remember the command and cuts down on typing
errors.

If you are part way through typing a command and
notice a spelling mistake, you can use the following
key combinations to get to it:

ctrl + a takes you to the beginning of the line
ctrl + e takes you to the end of the line

alt + b takes you to back a word

alt + f takes you forward a word

There are more, but these few are easy to
remember and are usually sufficient.

If you have previously typed a long command and
don't want to have to re-type it, then ctrl-r starts a
reverse search. Just start typing the command, and

as you type, the shell will match what you type to the

most relevant previous command. When you have
an exact match, just press enter.

Type a letter, any letter, e.g. 'a’ then press tab and
return.

Answer 'y' and press return.

That gives you some idea of the number of
commands we have to play with (almost 2000 in a
basic installation of PCLinuxOS 2009.2).

Don't worry. You will only ever need a very small
number of these commands but, if you need to do
something, then there is a command or set of
commands that will do it for you.

So you've dipped a toe in the water. How does if
feel? Hopefully not too bad, because next time we
are going to wade in waist deep, doing some things
with root permissions. That is where the command
line comes in to its own.

Visit.
Contribute.
Build.

The PCLinuxOS
Wiki

It Belongs To YOU!

Qu

i
primacloud

)

http://www.enkiconsulting.net/
http://pclinuxos.com/?page_id=186
http://www.pclinuxos.com/wiki/index.php/Main_Page

Corrrizizie] Lirl2 Inrarrz)iec=

by Peter Kelly (critter)

In last months tutorial, | presumed that anybody
reading it had no experience whatsoever of using
the command line. If you worked through that, then
you should be ready for a more in depth look. There
is nothing too taxing in here, but you may find more
text per sub-heading. If you find an area where you
come to a brick wall, just walk around it and carry
on. Maybe come back to revisit it, or maybe wait for
that forehead slapping moment “Dohh!” or even
“Eurekal!” when enlightenment arrives.

If you followed along with last months installment,
you will now have a little experience of typing
commands on a command line using the application
konsole. So what? You could have done any of
those things without having to do all that silly typing.

The application konsole is known as a terminal
emulator. It allows you use the command line,
without losing sight of your warm and cozy KDE
GUI. But what happens if the X System, that is the
windowing system that KDE runs on, crashed? Or
some configuration file that the system depends
upon got corrupted, and when you booted up, you
were greeted only by some weird message and an
almost blank screen?

A leap in the dark

Press and hold ctrl + Alt and press F2.

%05) for 1586

tty?2

Now that is a terminal.
Don't panic! Your precious GUI is still around.
Ctrl + Alt + F7 gets you back.

Actually, you could have pressed any of the function
keys from F1 to F6 to get a raw, text only terminal.

| am currently logged into my KDE session as user
jane, so if | now drop into a text terminal as before

Ctrl + Alt + F2
| am prompted to log in.

home login:
jane (enter)
password

Yes, in Linux | can be in two places at the same
time. | am logged in as jane in my KDE session, and
| have now logged in again as jane in this terminal. |
now have access to all janes files and can edit them,
delete them, move them, rename them and create
new ones. | could have logged in as any user that |
knew the password of and had access to all of their
files. If | had logged in as root then | could have had
access to all files on the system and have
inadvertently caused chaos. For that reason you
should avoid logging in as root at all costs, there are
other ways to do things. There are times when it is
necessary to log in as root but it is very rare and
should only be done if you are absolutely sure about
what you are doing.

Iriero: ~:ire 2

A change of direction

Type ed ~ to make sure that you are in your home
directory, and then create a new file by using the
command.

touch newfile (enter) which creates a new,
empty file called “newfile”

echo “this file was created in
terminal 2 on ” > newfile

puts some text into the file.
Remember that the > symbol catches the output

from the command and puts it into the file (replacing
what was there originally so be careful when using

it).
Type date >> newfile

Using the symbol twice >> catches the command
output and appends it to the file.

exit logs me out and

Ctrl + Alt + F7

puts me back into KDE. Or, more correctly, into the
terminal that is running the X System and the KDE

environment.

Let's have a look at the contents of the file that we
just created.

cat newfile

(s)

What we are doing here is known as ‘redirection,’
and is a very important concept for working on the
command line. Most Linux commands are 'stream
oriented.' This means that data flows into and out of
the command rather like a sausage machine — meat
in one end, turn the handle and get sausages from
the other end. The data is processed by the
command as it flows through the command.

Let me try to explain what happens when you sit
down and start to type a command at a terminal
running a shell program such as bash. As you press
a key (or a combination of keys, like Shift + a), the
shell program stores the value of that key press in a
special area of memory known as a buffer and prints
a copy of it to the screen (usually the screen anyway
— see later). It then waits for another key-press to
add that also to the buffer. When you press the enter
key, it signals the end of that batch of input, and the
entire contents of the 'keyboard buffer' are sent to be
interpreted. This where bash works its' magic.

Bash takes all of the key presses that you have
typed from the keyboard buffer, lays them out on the
table into groups that you separated with spaces,
looks for any group of characters that it recognizes
as a command which it can execute, looks for
certain special characters that have a special 'shell’
meaning and then decides what to do with the rest
of the groups on the table based upon what it has
just found.

Usually, this just means that when you enter a
command line such as

1s /home/jane

bash has two things on the table, 1s and
/home/jane.

Now bash recognizes Is as a command and so it
looks for input information (how to use the
command), any options that may modify the default
way that this command performs its' function, and for
what to do with the results. (This a very simplified
overview but is sufficient for our present needs).

Previously we defined the command format to be
{cmd} {options} {argument}

Now we know a little more about bash we can
expand this to

{cmd} {options} {input argument}
{output argument}

{emd} is the name of the command to execute.

{options} such as -a or -al are ways of modifying
the output or result of the command.

{input argument} is anything that you want to
send to the command to work with.

{output argument} is where you want the results
of the command to go.

Now that bash has found a command 1s, it looks for

a group of key presses on the table that qualifies as
a suitable {input argument} for the command and
finds /home/jane. If nothing qualifies, then the
programmer who wrote the command will hopefully
have provided for a 'no input' default condition. Is
with no input defaults to the value 'wherever | am
now.' There are no options to tell the command to
modify its' output, therefore the output will be the
default for the Is command — a simple listing.

With no {output argument}, most commands
default to 'print it to the screen'.

So this command prints a simple listing of the
directory /home/jane to the screen.

These default values for where the input comes
from, and to where the output is directed, can be
changed by redirection. This is where you tell bash
to temporarily change its habits, and to take
instructions from the command line.

The shells default input and output are known as
stdin and stdout (the standard input device —
usually the keyboard, and the standard output
device, which is normally the screen). (There is a
third data stream known as stderr 'standard error,'
but let's learn to walk first, eh?)

You can however, redirect data from other sources,
or to other destinations such as files. In the previous
examples, we have redirected the output to a file,
instead of displaying it on the screen by using the >
operator. To redirect the input from somewhere other
than stdin, we use the < symbol. Try this.

(2)

1ls /etc > newfile?2 lists the contents of the
directory /etc to the file newfile2.

sort -r < newfile2 sorts the contents of the file
in reverse order.

Here, the Is command takes its input from stdin
(/etc) which was typed into the keyboard buffer and
the output is redirected to the file newfile2 instead of
being printed to the screen. In the next line, the sort
command uses contents of the file newfile2 as its
input and, as we haven't specified otherwise, sends
the output to stdout, the screen.

There is a better way to do this using a mechanism
which you have seen before. It is called a pipe, and
looks like this |.

1ls /etc | sort -r gives the same result as the
two lines above and cuts out the middleman i.e
newfile2. The output from the command Is /etc is
pushed through a pipe | into the command sort -r

So what's the difference between 1s > sort and
ls | sort?

This is often a source of confusion. 1s > sort
takes the output from the command Is and redirects
it to the file 'sort', which it creates if necessary, rather
than to the screen (stdout). Probably not what was
intended.

1s | sort takes the output and pipes it through
the command sort, which in turn sends its' output to
the screen (stdout), as this output has not been
redirected. In this manner, fairly complex commands
can be built up.

Create a small file with a random list of names using
some of the bash editing features described last
month.

touch contacts

echo john > contacts

Use the up-arrow to bring back the
previous line then alt + b and the
delete key to edit the 1line.

echo amy > contacts (don't forget to
use the > (append) operator here.)
echo gustav > contacts

echo bob > contacts

echo glenn > contacts

echo simon > contacts

echo george > contacts

Look at the file contents

type

cat contacts

john
amy

cat contacts | sort | tr [a-z]
contacts2

[A-z] >

What did that do?

cat contacts2
AMY

BOB

GEORGE

GLEN
GUSTAV
JOHN
SIMON

In the above compound command, the contents of
the file contacts is piped to the sort command which,
with no options supplied to modify the output, sorts
the contents alphabetically from a to z, which is the
commands default action. This in turn, is fed to the tr
(translate) command which converts any character
in the range [a-z] to its uppercase equivalent [A-Z].
Finally, the results from the translation are written to
a file called contacts2, which will be created if
necessary, or overwritten if it already exists. Don't
worry if you don't understand how these new
commands work. | just want you to get an idea of
how we can 'flow' data from files, through commands
and filters, and then write that data to a file or to the
screen.

Editing on the command line

When we made the file contacts, we did it line by
line, which is obviously unsatisfactory for all but the
simplest files. What is really needed is a text editor.
We could call up a graphical one that we are familiar
with, such as kwrite, but not when we are in a text
terminal, as we were when we typed Ctrl + Alt
+ F2. If, for example, the X windowing system

(10)

won't start, then you may well find yourself in just
that position.

The basic editor which you will find in almost every
distribution is vi, which we will visit later, as it may
well be that one day it is all you have at your
disposal. It is however, very powerful editor, though
difficult and not very intuitive to use for new users.

Fortunately, PCLinuxOS comes with a very nice,
simple edtor for command line work. Meet nano!

Typing nano on the command line opens the editor
with a blank page. If you specify a file-name after the
command nano, then it will open that file, if it exists.
If no file of that name exists, then no file is created at
this stage but you will be prompted to save your
work with this file-name when you exit. Only then is
the file created.

Typing nano contacts2 opens the editor with our
sorted file, and the cursor is on the first character of
the first line.

The screen is divided into four areas:

* The top line of the screen is known as the header
bar. This shows the version of nano and the name of
the current file being edited. If you didn't specify a
file name, then this will read 'new buffer.' If the file
has been modified since the last save, then
'‘Modified' will be shown on the right hand side of the
header bar.

* The bottom two lines show a list of command
shortcuts. Nano commands are defined by either the
control key being held down while the shortcut key is
pressed, or by the shortcut key being preceded by
the escape key. The caret symbol » represents the
control key, so for example, Ctrl + x exits the
program. The escape key is represented by M.
These few commands are usually enough for most
purposes. Esc - a marks text,and Esc - m
enables/disables limited mouse support. If you want
more then there is more, Ctrl + g will shwyou a
brief introduction.

* The third line

GNU nano 2.8.9 File: contacts2

Read
File

from the bottom,
just above the list
of the commands,
is the status line
which shows that
nano read in 7
lines from the file
contacts 2.

* The rest of the
screen is the
editing area.

With the file contacts2 loaded, use the arrow keys to
position the cursor on the letter L of the name
GLENN. Press Esc - a to start marking text. Press
the right arrow key 3 times to mark the 3 letters LEN
press Ctrl + k. This removes the three letters
and places them in the cut buffer, a temporary
storage area. Press Ctrl + u, and this inserts the
contents of the cut buffer at the current cursor
position restoring the name GLENN. Use the arrow
keys to position the cursor at the end of the file, and
press Ctrl + u again to add the new contact LEN.
This is cut & paste, nano style.

Ctrl + o prompts you to write out the file with
name contacts 2. Pressing enter saves the
changes and puts you back in the editor. If you
change the file name to save the file as, you will be
prompted to confirm this, and be returned to the
editor with the new file.

Add a few more names then press Ctrl + x.
Answer y and press enter to leave the editor saving
your changes.

This type of simple editor is ideal for beginners to
edit Linux configuration files, as it produces only text
with no fancy formatting that might be
misinterpreted. If you want to write a novel use
something else.

Sitting in the bosses chair

For some things you do need to have the special
privileges of the root user and the safest way to do
this is to use the command su. This command

(u)

allows you to 'switch user' identity to that of any user
you know the password of.

su john will prompt you for the password of john.
If there is a user account for john, and if the
password is successfully entered, then the shell will
allow you full access to all of johns files and
directories. This is why you should keep your
password safe. su is a very powerful command.

Typing su without a user name will assume that you
want to have root access to all files and directories,
and will prompt you for the root password.

When you have root privileges you
~are able to make your system
.\, completely unusable!

Let's do some root stuff.

Notice that the prompt symbol has changed from $
to #?

[]
Password:
[root@home

Maybe you didn't, but I'm pretty sure that you noticed
the prompt is now bright red. This is not always the
case, but the developers of PCLinuxOS believe that
you really should be aware that you are now in a
position to do some real damage and have modified
the prompt to reflect that. Notice also that the prompt
shows | am working now as root not jane but | am

still in janes' home directory. Be aware that the
commands ed and cd ~ will now take you to the
directory /root, and not to janes home directory,
/home/jane!

One thing that root can do that mere mortals cannot
is to add and delete users on the system. To add a
new user named john to the system, the command
useradd john creates the user account, and sets
up the user environment by copying the files that the
system administrator or the distribution developers
have placed in the /etc/skel directory.

It does not add the user to any groups other than the
users default group. This can be done here with the
-G option, followed by a list of groups, or later with
the command usermod. We'll cover groups later
when we get to file permissions.

You should follow the account creation with
passwd john

to create an initial user password for the new john
account and then pass this password to the user
who, once he has logged in with it, may change it
using the same command.

userdel john

deletes the user. If you specify the -r option here
then the users home directory and any files it
contains will be deleted.

There is also a command called adduser, which is
similar to useradd.

Having done our work, we should renounce our
special root privileges with cCtrl + dorthe exit
command.

Now check that the account has been successfully
created.

~1% pwd

exit

[joh
exit
[jane

su john logs me in to johns account, but the
prompt tells me that | am still in janes' home
directory

cd ~ as | am now logged in as john, this takes me

to johns home directory, which | verify with the
command

pwd

The exit command logs me out of johns account
and puts me back into janes account, and also back

(12)

into whatever directory jane was in when she issued
the su command.

We'll return to the root terminal later when we have a
few more commands to use.

Customizing our environment

After using the command line for a while, you will
find that many times you type in the same
commands and options over and over. Surely
somebody can think of a better way?.

They did. Itis called an alias, and is a way of
giving a command that you regularly use its' own
name. You already have some aliases in
PCLinuxOS. Type the command alias to show them.

--color=auto’

--show-control-chars

e/mc/bin/mc-wrapper.sh'

Look at one about halfway down the list: alias
1l1="1ls -1'

If you type
11

on the command line bash will interpret this as 1s
-1, and execute it accordingly.

Let's make our own new alias. Suppose that | often
want a hard copy of a directory listing with the
contents sorted by file size and with these sizes in a
format that is easily understood.

To print out files on the printer in Linux we use the
command

lpr

The command 1pr myfilel will send the contents
of the file myfilel to the default printer without the
need for any redirection by the user but it is also
common practice to pipe the input to lpr from
another command.

| want to create an alias that will print out my listing
easily and | would like to use the name Ispr, but |
don't want to conflict with any existing system
command. So enter Is and then press tab to show a
list of all commands that start with the characters Is.

From this, | can see that there is no command
named 1spr that | have access to and so | am safe
to choose this as the name of my alias.

Press ctrl + c to cancel the command.

To create the alias, | use the command
alias l1lspr="l1ls -1lhSr | lpr"

This tells bash “whenever | type the key combination
1spr execute the command 1s -1hSr | lpr.”

This creates a long (option |) directory listing in
human readable form (option h), Sorted by file size
(option S) in reverse order (option r) and pipes the
output to the printer.

Make sure that your printer is switched on and
connected, then type

lspr enter.

This way, | don't have to remember how to format
the command, just the alias 1spr.

Unfortunately, as soon as you end this session of
bash by logging out or by closing the konsole
window, this new alias is lost. To make it permanent,
we need to edit one of those hidden files, the ones
whose names begin with a period, in your home
directory, .bashrc.

This is the bash resource configuration file and is
read every time a new instance of bash is invoked.

()

GNU nano 2.0.9 File: .bashrc

B .bashrc

nano ~/.bashrc

will open the .bashrc file that is in your home (~)
directory, ready to be edited.

Press the down arrow until you reach the end of the
file and then add the alias and press enter.

While we are here, copy and paste the following

export PS1='\[\033[01;32m\]\u@\h > \W
\$\[\033[37m\] '

Make sure that you include the final quote mark ('),
then press enter.

K
= ol UnCut

Always press enter at
the end of a system
configuration file to
make sure that it
ends with a new
blank line.

It should now look
like the image at the
bottom of this
column.

Press ctrl + xand
answer y to the
prompt then press
enter to save the
modified file. Close
the konsole window
to end the bash
session, and then
restart it. This is necessary to enable the new
instance of bash to read the modified configuration
file.

If all went well, you should be able to type Ispr to get
your printout, and you should have a nice green
prompt to identify you as “not root.” If you don't like
green, then you can change it by altering the 01 ; 32
part of this line.

.bashrc
User specific aliases and functions

Source glob definitions

if [-f shrc 1; then

export PS1='\[\033[01;32m\]\u@\h > \W
\$\[\033[37m\]

Change 32 to a value between 30 and 37 to change
the basic color.

Where have 01, we may put several different values:

00 for normal colors

01 for bright colors

04 for underlined text
05 for blinking text

07 for reverse video text

These can be combined e.g. 01;04 ;05 for bright,
underlined, blinking text.

Adding a value between 40 and 47 changes the
background color e.g. 1;34;47

To try out the colors on the command line use

echo -e '\033[01;37;44mPCLinux0S -
Radically Simple\033[Om'

and substitute 1 ;37 ; 44 for the above values
separated by a semicolon ;. The -e option added to
the echo command tells it to interpret certain
sequences of characters, known as escape
sequences, rather than just blindly printing them on
the screen, which is why we don't see all that
gobbledygook on the screen.

> 5 echo -e '\033[01;37;44mPCLinux0S - Radically Simple\@33([0m'
Radically Simple

Experiment with different color combinations. Maybe
login or su to johns account and change his prompt
to blue. As long as you stay away from the root
account you can do no real harm. These are, after

all, only dummy accounts.

Do you feel more at home now?

H—(—jl—(—)—%»@ e

Want to keep up on the latest that's
going on with PCLinuxOS?

Follow PCLinuxOS on Twitter!

http:/itwitter.coml/iluvpclinuxos

I\.’Ia My Data Center.

Flexible
Reliable
Secure
On-Demund
Computing

..delivered ina
win/win relationship

EN * K1 e CodiputingUeitig™

w?v‘ﬁ-ﬁ-ri,'o‘(-_.‘ ——

LT

www.enkiconsulting. net

PCLinuxOnline

PCLinuxOS News and Information

A magazine just isn't a magazine
without articles to fill the pages.

If you have article ideas, or if you
would like to contribute articles to the
PCLinuxOS Magazine,
send an email to:
pclinuxos.mag@gmail.com

We are interested in general articles
about Linux, and (of course), articles
specific to PCLinuxOS.

It’s easier than E=mc?
It’s elemental
It’s light years ahead
It’s a wise choice
It’s Radically Simple

http://www.pclinuxos.com
mailto:pclinuxos.mag@gmail.com
http://mypclinuxos.com/forum/
http://www.pclinuxonline.com
http://twitter.com/iluvpclinuxos
http://www.enkiconsulting.net
http://pclinuxos.com/?page_id=184

Cornrrzirie] Liri2 lrnic2rrz1c2 [ricros Z:rre =

by Peter Kelly (critter)

In the first two installments of this introduction, we
learned how to get around the file system, create
and edit files, how to use some of the more common
commands in Linux, and how to cut down on some
of that tedious typing. Hopefully, the command line
environment is not so intimidating now. There is a bit
more theory to cover but it is nothing too difficult,
and it really doesn't matter if you don't understand it
all. When you come to a point where you need that
information, you can recall “hey! | read about that,”
and then come back to look it up, or search the
internet for it. Importantly, you will have been
introduced to the fact that it exists, which gives you a
way forward. If you have followed so far and get
through this episode, then you will have a good
grasp of what Linux is about. Then we can start
using the real power of the Linux command line that
you can never fully achieve by using only the GUI.

A New Name

When Jane got her computer, she chose to name it
‘home.' It is, after all, the computer that she uses at
home. This has a couple of disadvantages. What if
the computer is to be networked, and her brother,
John, has also named his computer home? There
would be two computers on the network, both
named home, and obviously this is not good. Also,
when Jane looks at her prompt, she sometimes
mistakes home in the prompt to be telling her that
she is in the home directory. Let's change things.
Jane decides that she wants her computer to be
known as 'daisy'.

The name of a computer on the network is known as
the 'hostname'. If no hame has been assigned, then
the name ‘'localhost' (meaning 'this computer') will
be shown. Any change needs to be done in two
places in PCLinuxOS, and it needs to be done with
root privileges. The name localhost is how the
computer refers to itself internally, a bit like saying
'me'. In order for the computer to recognize that the
new hostname daisy refers to this computer, we
have to create an alias. This is like saying daisy,
a.k.a. localhost.

The first file that needs to be edited is named hosts,
and can be found in the /etc directory. This can be
done in two ways: by editing the file directly with an
editor, or by using the PCLinuxOS Control Center.
The PCLinuxOS Control Center, also known as
PCC, is a front end for several smaller, graphical
utilities whose names usually contain the word 'drak'’
and do a little bit of command line work for you. To
prove a point:

cat /etc/hosts

host $ cat /etc/hosts
generated by drakhosts

127.0.0.1 home localhost
me > host $ |

If you have never changed it, your hosts file will look
slightly different. Type drak and press Tab to see the
available commands. The command we want is
drakhosts (the Control Center 'front page' is
drakconf). Type 'ho' and press Tab to complete the
command and press enter. If you did this as a
normal user, then you will be prompted for the root

password.

oo Query B

(& You are attempting to run “drakhosts"

% which requires administrative privileges,
but more information is needed in order to
do so)

Authenticating as "root"

Password:

Then you will get this screen.

Manage hosts definitions

Manage hosts definitions

IP address Host name Host Aliases | Add |

127.0.0.1 home localhost [Modify |
Remove |

| cancel | | ok

B

Notice that there are three columns:. IP address,
hostname and host aliases. Select localhost and

then click modify.
‘ 16 ’

= Modify entry o=l
Please modify information
IP address: 127.0.0.1
Host name: daisy|
Host Aliases: localhost
Cancel Ok

In the host name box, enter the name you want for
your computer (jane has chosen the name daisy),
and in the host aliases box enter localhost (lower
case no spaces), Then click OK in the modify dialog
box, and click on OK in the drakhosts box to get
back to the command line.

cat /etc/hosts

jane@home > host § cat /etc/hosts
generated by drakhosts

127.0.0.1 daisy localhost
jane@home > host $ |

Notice that the contents have changed. Most of the
PCC utilities are just fancy-pants ways of editing
system configuration files.

Now that this computer knows that we are referring
to itself when we use the name daisy, we need to
make sure that all other computers on the network
also know.

Notice the IP address. That's the sequence of four
numbers at the beginning. Localhost always has this
sequence 127.0.0.1 — it's how the computer spells
'me.' Computers speak in numbers. An IP address is
how computers refer to each other. On a network, a
computer is known by the IP address assigned to its
network adapter, usually something like 192.168.0.1,
which is not easy for humans to remember, so we
give the computer a 'proper' name, like daisy, so that
it is more easily recognized and referred to on the
network.

The second file that needs to be changed is called
network, and is in the sysconfig directory, a sub-
directory of /etc.

We'll use the terminal to change this file.

su (enter)

Enter the root password.

nano /etcl/sysconfig/network will open the file for
editing. Add or change the line HOSTNAME=daisy
(or whatever name you chose). Notice uppercase
and no spaces.

GNU nano 2.0.9 File: /etc/sysconfig/network Modified

g8 Get Help g WriteOut le Cut Text
o Exit g Justify s t UnCut

Press enter and then ctrl—x to save the file and exit.
Job done! - command line style.

That's it, but you will need to reboot the apply the
changes.

Finding Things

To be able to work with files, we have to know where
they are or how to find them. There many ways in
Linux to get this information, so let's run through
some of them.

locate — this command uses a database of files
known on the system to look up their whereabouts.
This database is updated on a daily basis
automatically by the system using the cron utility,
which we will look at in due course. The database
may be updated manually at any time using the
command updatedb. The updatedb command needs
root privileges, while locate doesn't.

| jane@daisy > ~ $ locate .bashrc
| /etc/skel/.bashrc

| /home/jane/ .bashrc

| /home/john/.bashrc

.bashrc is the file that we edited to change the color
of our prompt. Locate has found 3 instances of the
file: Jane's, John's, and the one that is used when a
new user account is created. Locate has the
advantage of being extremely fast, but the
disadvantage of only knowing about the files that it
has been told to store in it's database.

dd - 5 whereis 1s
/bin/ls /fusr/share/man/manl/1ls.1l.bz2

aisy > ~

whereis - this command looks only for Linux
commands and their associated source and
documentation files.

Here, the binary file that is the actual Is command,
and its compressed manual documentation file, has
been reported.

find — an extremely powerful command with a
slightly more complex syntax than most other Linux
commands. Most people (that's us) will only need a
very small amount of the power available in this
command, so we shan't look too deeply at all the
bells and whistles — yet.

By default, find uses the current directory for its
input, STDOUT (the screen) for its output and 'all
files' as the option, which results in the output from
using find being the same as from the command Is
-aR, albeit in a slightly different format. Try it. All that
output is because find, unchecked, looks at all files,
including hidden ones, in its start directory, and then
recursively in all sub-directories, outputting all those
files that match its search criteria, in this case "all
files'.

To make use of the find command, we have to
control it. The most common way of using find to
locate a particular file or set of files looks like this.
Find {where to start looking} {search criteria}
{filename(s)}

There are lots of things that could go in the {search
criteria} position, but usually we want to search for a
file by name. So, to find a file named 'network’ that is
believed to be somewhere in the /etc directory
structure, we would format our command thus:

i 5y ~ § Tind /etc -name network
fin /etc/portreserve': Permission denied
/etc/rc.d/init.d/network

find: “/etc/skel/.kde': Permission denied

find: “/etc/cups/ssl': Permission denied
/etc/netprofile/profiles/default/services/network
/etc/sysconfig/network

jé isy > ~ §

This has found three files named network and given
us their locations. Unfortunately, it has also thrown
out some errors. The /etc directory is a system
directory, and as such is not owned by Jane. Jane
can only see the files in those directories to which
the system has granted her permission to read the
contents. When we covered redirection, | talked
about STDIN and STDOUT, and mentioned a third
data stream named STDERR. These three data
streams may also be referred to by numbers, 0,1
and 2 respectively. STDERR, number 2, is to where
programs write their error messages. Depending on
the program, this may be a file such as a log file or
to STDOUT, as was the case here. To hide these
messages, we can redirect STDERR to somewhere
else. Linux treats devices as files, and lets us read
and write to them just as we would to a file. Devices
have names like /dev/cdrom or /dev/hdal, but there
is a special device known as /dev/null. /dev/null is
like a black hole, swallowing anything written to it
never to be seen again. Similarly, reading from
/dev/null you get nothing, or a stream of nothings.
Not the number 0, but the character that has the
value 0 and is known as null. To redirect the error
messages but keep the data output, we leave data
stream 1 (STDOUT) alone and intercept number 2
(STDERR) with the directive 2»/dev/null.

jé isy = -~ § find /etc -name network 2>/dev/null
Jetc/rc.d/init.d/network
/etc/netprofile/profiles/default/services/network

/etc/sysconfig/network

YV > o~ ¢
Sy = >

Nice clean output.

When you don't know the exact name of the file that
you are looking for, then you can use 'wild cards.'
These are special characters that the shell interprets
differently. The most common ones are:

¢ *'means 'substitute here zero or more unknown
characters',

¢ '?' means 'substitute exactly one unknown
character'

There are a lot more but we will cover these later
when we get to 'regular expressions', These two
suffice for most of our present needs.

Linux — The Basics

Linux really only understands two things: files and
processes. If that seems to be a rather bold and
sweeping statement, then consider this: Whatever
we do on a computer involves manipulating files. We
create, delete, edit and rename them. We cut them
up, join them together and search them for a
particular piece of information. In short, we do all
manner of things to files to get our desired result.
We do this using processes.

(12)

There are several types of files.

* Regular files. These can be split into:

o Data files such as text files, pictures, or music
files

o Executable scripts — lists of instructions, in
human-readable language, to be executed
sequentially (but often with some clever route
planning that makes it difficult to follow).

o Binaries — executable files in computer-
readable form. These are the applications that
we run and libraries of functions that the
applications refer to. Their contents are mostly
unintelligible to humans.

» Directories. Really just lists of files that may be
scattered over one or more hard drives
grouped together for human convenience.

» Links. Pointers to actual files. There may be
many links to any one file.

» Special Files. These are used by Linux to
communicate information to the system, and to
interact with the hardware. These are mostly
found in the /dev directory. In Linux, even your
mouse is treated as a file.

e Sockets. We can ignore these for now.

« Named pipes. As above. These will also keep
until later.

When we click on an executable file, or type its
name on the command line, the kernel starts a
process which will hopefully run until terminated,
either on completion, or prematurely by the user.
Each process is given an identity in the form of a
number, known as the 'process id'. The process
may, in turn, start any number of sub-processes.

When the initial process is terminated, then any
unused processes associated with that process are
also terminated, and any system resources such as
allocated memory and the process id, are released,
and any open files are closed. Occasionally, things
don't quite go according to plan and the system
resources start to be in short supply, having the
effect of slowing down the system, unless somebody
intervenes. A system reboot would fix things, but that
is not always convenient. This was designed as a
multi-user system, and shutting down a large system
would cause too much disruption. There are other
ways to do things.

This is why we need to understand about files and
processes.

Links

Perhaps now is a good time to discuss links. There
are two kinds of links: soft links, also known as
symlinks (symbolic links), and hard links. A soft link
is similar to a shortcut in Windows and is a pointer to
a filename that may be in the same directory or,
more commonly, buried deep in some other directory
structure. This is a convenient way to access files
without having to enter (or even know) the entire
fully qualified address of the file. For example,

suppose that we have a file named contacts that
resides several directories deep in your home
directory, but you need to be able to access it easily
from your home directory.

Let's set this up.

cd ~
mkdir -p mydir/personal/mycontacts

Here the -p option tells the mkdir command to make
any parent directories as required.

mv contacts mydir/personal/mycontacts moves
the contacts file we created previously into the new
directory

The file cannot be read because we moved it to our
new directory

In -s mydir/personal/mycontacts/contacts link-to-
contacts will create a soft (-s) link to that file and
then it can be accessed through link-to-contacts.

cat link-to-contacts will display the contents of
/home/jane/mydirl/personal/mycontacts/contacts.

ja isy = ~ % cat link-to-contacts

The syntax for the command In is In {-s if a soft
link} {what you want to link to} {name of the link}

The system makes extensive use of symlinks, and
any file may be linked to many times. If the original
file is deleted from the directory mycontacts, then the
link remains in my /home directory, but cat contacts
now gives the message 'No such file or directory.'
This is known as a broken link, and if we issue the
command Is -I, we will see the output for that link
listed in flashing red/white text (other distributions
may use different colors).

Hard links don't point to the file name, but rather
contain a reference to something known as an
'inode'. When a file is created, the file system
allocates a number to it, an inode. This number
points the file system to a set of meta data, or
information about the file, it's permissions, it's name,
and where the data is stored on the disk etc. Every
inode on a partition is unique and knows only about
one file, but the same inode number on a different
partition or drive will reference a different set of meta
data, and hence file. Think of a file as having two
sections: the meta data part that is referenced by the
inode and the data part that is referenced by the
meta data. Normally, you don't need to know about
inodes, as the filesystem does all that for you.

You can see these numbers if you issue the
command

link-to-contacts@
aisy > S

metadata

Inode for file 196501
ipiran 196502?
196503
|
|
Inode for |
link-to- 196535
contacts 196536
196537

All of this is file contacts

cd mydir/personal/lmycontacts

jane@daisy > mycontac
502 contacts

1
1

Sy
jane@daisy > mycontac
A hard link is a bit like another name for the file, but
it inherits the files DNA, as it were. Creating a hard
link is the same as for a soft link, but without the -s.
When a file is created, the number of links to the
inode is set to one, and when a hard link is created,
the count for the number of links to the inode is
increased by one. When a hard link or 'the original
file' is deleted, then the count is decreased by one.
When, and only when, the link count reaches zero,
the inode and storage for the meta data and data
parts are released i.e. the file is deleted.

In ~Imydir/personallmycontacts/contacts
contacts-link creates a hard link named contacts-
link

!

500 newfile

501 newfile?2

Note that the inodes are the same for both the link

and the file, i.e. 965021
(20)

cat contacts-link

gustav

bob
glenn
simon

cat contacts-link
rm mydir/personal/lmycontacts/contacts deletes
the original file.

jane@daisy > ~ $ rm mydir/personal/mycontacts/contacts
remove regular file “mydir/personal/mycontacts/contacts'?

,7_5.

cat contacts-link

gustav
bob
glenn
simon

george

Although the file has been deleted, the link still
points to the inode, and can thus access the data
which has not yet been deleted. Now while this may
be seen as a security nightmare, it does have the
advantage of allowing important files to be accessed
by unsafe hands, while being comforted by the

knowledge that the link to the file data can be easily
reconstructed and no actual data loss need occur.

Permissions & Groups

Unix, from which Linux was developed, was
designed as a multi-user system, and a method was
needed to determine who had access to which files.
There are some files that are private, some that
other users need access to, and some that may be
made public. Also, the level of access needs to be
considered: are users allowed to modify or delete

the file, or if the file is executable, who may execute
it?

By default, when a user creates a file, they are
known as the ‘owner' of that file. It belongs to the
users primary group, but this can be changed. Some
users create files that they need to allow a group of
other users to access, but deny that access to
others. Permissions were defined in three levels:

* Read permission

» Write permission

» Execute permission (In the case of a directory you
may change to it.)

Each of these permissions are applied or removed
for:

e The owner
e The group
« Everybody else

For regular files, the permissions are fairly obvious.
For a directory, read permission means that you may

) newfil
newfile2

Truxrwxrwx 1 jane jane 5 Nov 12 12:30 tmp -3
list the contents (file or directory names), write
permission means that you may create, delete or
rename files in the directory, and execute permission
means that you may 'cd' — change to that directory.

If we look at a directory listing using the command
Is -I:

The first position on the left indicates the file type
and this can be any of the following:

regular file or hard link
directory

symbolic link

named pipe

socket

character device

block device

.
O wnwoT —a!

The next nine positions indicate the files
permissions. The first three are the user
permissions, the second three the group
permissions, and the last three are the other, or
world, permissions. The read, write and execute
permissions are displayed like this:

(21)

user group other
rwXx r- - r--

Here the user may read, modify and execute the file
while others may look at the contents only. The read
and write permissions are represented by 'r' and 'w',
but the execute permission may be 'x', 's' or 't'.

X the normal execute permission
e s suid — set user id

ot The 'sticky' bit

The last two are rarely needed by regular users so
we can skip them for now. Permissions may be
changed by root or by the owner of the file and the
command to do this is

chmod {option} {permissions} {file or directory
name}

What you put in the permissions part of the above
statement may be done in two ways.

You can use 'U', 'g' 'o' and 'a' (all) to specify which
set of permissions to change, 'r', 'w' and 'x' for the
permission and '+', - or '=" to set or unset the
permissions. Additionally, you may combine these to
change more than one. Omitting u, g or o sets or
unsets the specified permission in all positions.

Examples: If myfile has permissions rw- r-- r--

chmod g+w adds write permission for the group, i.e.

rw- rw- r--

chmod o+w adds write permission for others, i.e.
rW- rw- rw-

chmod +x adds execute permission for everybody,
i.e. rwx rwx r-x

chmod ug-w removes write permission for the user
and group, i.e. r-x r-x r-x

chmod ugo=rw sets permission to read write for
everyone, i.e. rw-rw-rw-

The other way to specify permissions is with
numbers. Numerically permissions are set like this:

read=4, write=2 and execute=1.

This is expressed in something known as 'octal’
(counting in eights instead of tens), but we don't
need to understand that here to use it. Instead of 'r',
‘W', X" we use '4', '2' and '1'. To combine them, we
add themup sothatrw =4 +2 = 6.

To apply this to the three groups, we use three of the
sums so that 'rwx rw- r--' becomes (4+2+1) (4+2+0)
(4+0+0) =764.

This is also sometimes expressed as 0764 — don't
worry about the leading zero, it's an 'octal’ thing and,
for our purposes, can be included or not.

So to set permissions to rw- rw- r-- we would use the
command chmod 664 myfilel.

Looking again at the directory listing, after the
permissions, is a number that is the number of links

or references to that file. After that, we have the
name of the owner of the file, and then the name of
the group that the file belongs to.

To get a list of all groups, look at /etc/group
cat /etc/group

To find out which groups somebody belongs to, use
the command

groups username
To add a new group, you need root privileges and
the command ‘'groupadd’

su (enter root password)
groupadd friends

adds the new group 'friends' to the /etc/group file.

To add users to groups use the command usermod
the -a option means append.

$ groups john

p floppy cdrom cdwriter audio video users lpadmin polkituser dialout

usermod -aG friends jane (Note uppercase G)
usermod -aG friends john

Adds jane and john to the group friends. Becomes
effective at the next login.

To make a file accessible to members of a group we
can use the command ‘chown' — change ownerships.

chown jane:friends contacts2

()

This keeps jane as the owner of the file but changes
group membership.

jan isy > ~ § sU
Password:
groupadd friends

usermod -aG friends jane
1# usermod -aG friends john

As we wanted to change only the group could have
also done

chown :friends contacts2
Groups are deleted with the command

groupdel groupname

1# groupdel friends

This leaves all files that belonged to the deleted
group 'orphaned'. Cleaning up this mess is up to
you.

~ § groups
cdrom polkituser cdwriter audio video
in dialout friends
$ 1s -1 contacts2
ane jane 44 Nov 10 1: contacts?
5 chown : ends contacts2
contacts2
44 Nov 160
chmod 660 contacts2
1s -1 contacts2
ane friends 44 Nov 10
~ % su john

] contacts2

E Y
Password:

groups
john 1p floppy cdrom polkituser cdwriter audio video
users Llpadmin dialout friends

The group has been deleted from the /etc/group file,
and now the file shows as belonging to the
indeterminate group 502. This known as the group id
or guid and we can use this to tidy things up. Use
the find command to locate all files that have a guid
of 502.

jar aisy > ~ $ su
Passwo

[root y janel# find /home -gid 502
/home/jane/contacts?2

We found, as expected, only the one file that we
changed. but even if there were many files it would
be a simple matter to

chown :jane filename

If however, there were hundreds of files, then it
would be rather daunting to manually change them
all. To do this we might use a loop. We'll discuss this
shortly.

'~ tuxmachines.org

.‘ 3 2 2
B
h

Please
iDonate To
PCLinux0OsS.

International Community
PCLinuxOS Sites

PC].1ruxOS nJ

Netherlands

PCLinux0S

Tufkey - 3
O =

Denmark

A7y, Czechoslovakia

PCLirux0OS

sila jednoduchost
PCLirux0S.it

Italy

—u ;--- » =% #» Polskie Centrum
: Poland

http://www.pclinuxos.nl/
http://www.bekozap.com/
http://www.pclinuxos.dk/news.php
http://www.pclinuxos.cz/
http://pclinuxos.it/
http://pclinuxos.org.pl/
http://www.tuxmachines.org
http://pclinuxos.com/?page_id=7

Corrrzirie] Liri2 Irnic2rrzic2 Jricro: Z:rre 21

by Peter Kelly (critter)

Processes

When you start an executable file, either by clicking
on its icon or by entering its name in a terminal, you
are actually starting what Linux knows as a process.
This may, in turn, start other processes, or series of
processes. Other processes are started during the
boot up sequence, or automatically as required by
the system.

A process is what acts on files and the data that
those files contain. As Linux is a multitasking, multi-
user operating system, you and other users on the
system may start many applications that have their
own sets of processes. Obviously, Linux has to have
a method of controlling and keeping track of all
these processes.

Each process is given a unique identity when it is
started, known as the process id number, or PID, is
allocated space in memory and assigned certain
other system resources that needn't concern us
here. When booting the system, the first process to
be started is always init, and is given the PID
number 1. To get a graphical representation of the
processes currently active on your system type in a
console:

pstree -p

The -p option shows the PIDs.

The initial process started by an application is known
as the parent, and any processes spawned from
that process are known as child processes.
Modern systems use threads, or Light Weight
Processes (LWP), as child processes where
practical, which share some of the resources of the
parent. Communication between the system and
processes is done by signals, and the whole show is
orchestrated by the scheduler.

Usually all this happens under the hood, and we
don't have to bother about it. But just occasionally,
something goes wrong, the system starts to
misbehave, and user intervention is required. This is
where familiarity with the command line comes in.

=[=i—+J Open a terminal and
type:

gixgears

gixgears > Idevinull &

This a fairly resource
intensive application
(usually used for
benchmarking
systems) that we don't
want to see the output
“from in this case, so
we dump it to nowhere. The & character puts this
process running in the background so that we get
control of our terminal back. More about background
tasks in a moment.

Now type:

top

i
PID USER

PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

That's a lot of information! Don't worry, you don't
need all of this. Look at the line representing the
glxgears application (the next to last line in the
screen shot). The first column is labeled PID and
has a value of 8534, that's what we need.

Suppose this application refused to respond and you
couldn't close it. In top type k and you will be
prompted "PID to kill:" Enter 8534. This gives the
prompt Kill PID 8534 with signal [15]:

If you enter n here, the command is canceled. Enter
y, and and the application is sent the default signal
15. Signal 15 is known as SIGTERM, and is the
normal termination signal. On receipt of this signal,
the application will close gracefully, handing back
any resources to the system, kind of like asking
somebody to 'please leave'. Occasionally, you meet
a troublemaker of a process that just will not go.
Then, you can use the strongest signal of all, signal
9, known as SIGKILL. This is more of a bullet in the
head approach — sure it works, but it might just
make more trouble in the long run, and is best
avoided if possible.

There are lots of signals available, but those are the
only two that you are likely to have to issue
manually. Top is a very comprehensive program that
uses single letter commands. h brings up the help
screen, A for the alternate display using field groups,
z toggles the color of the current group, and W

()

saves your settings. There is so much more to this
utility that you really do need to use the 'h' (help)
command to get the most out of it. Remember that
Linux is very literal, and uppercase or lowercase
commands give very different results.

2 PID PPID TIME+ %CPU %MEM PR NI S VIRT SWAP RES D COMMAND
469 3215 0:00.10 0.0 0.9 20 © S 31444 22m 8912 L kio_trast
455):00.10) 0)) 5 31360 2m 8360 i ste

Another useful tool for manipulating processes is ps
(process status). To see a list of all processes owned
by the user issuing the command ps ux (this will be
you if used as a normal user, root or maybe
someone else if you have used the su command).

Note that the leading hyphen usually required when
supplying options to a command, is optional for this
command.

Even when you think that you aren't doing anything,
you will get a fairly long list. Scroll up to the top of
the list and you will see a header line describing the
various columns of information. The second column
here is the PID, and the last column is the command
that was used to start the process. If, as in the
previous example, we were trying to find the pid of
glxgears we would use the command

ps ux | grep glxgears

ps ux | grep glxgears
6 0 378

0 1316 pts/1 S 07:10 0:02 glxgears

2006 704 pts/1 S+ 07:13 0:00 grep --color glxgear

This gives us two results. The first one, with the PID
of 11730, is the one that we are looking for. The
second one is the grep command we used to filter
the results. Why grep ---color? Where did that come
from? PCLinuxOS provides an alias for the grep
command so that matches are highlighted in color
(or, if you live in the UK, they will be in full glorious
colour). Type alias | grep grep on the command line
to see it.

The grep command has also filtered out the header

line, as that did not contain the expression 'glxgears'.

To get rid of the errant process, we use the Kkill
command:

kill 11730

We could specify a signal, as in kill -s 9 11730, but |
think that the default, unstated signal 15 is powerful
enough magic.

A signal may be sent by name or by number. If you
want the complete list of signal names and numbers
type

kill -1

You may only terminate any process that you own,

so be especially careful when working with root
privileges.

When working in a GUI, if you want to start another
application, then clicking on its icon will openitin a
new window. For command line work, you can open
another terminal emulator. But what if you are locked
into a single terminal, as you may be if the system
has crashed? You may occasionally start a process
which takes a long time to complete and need to
execute another command.

One way around this is to follow the command with
an ampersand (&), as we did with the glxgears
application. This puts the process into the
background and returns control of the terminal to the
user. If the process is already running, it can be put
into the background using the command control + z,
which suspends the process running in the
foreground, and then use the command bg, which
causes the process to resume execution in the
background.

To list the processes running in the current shell, use
the command jobs.

= ~ 5 glxgears = /dev/null &

home = ~ $ jobs
Running
home > ~ §

glxgears =/dev/null &

Each job started in the shell is given a number,
which is displayed in square brackets, along with the
PID. Here, job 1 has PID 8319. The jobs command
displays the job number, its status (running, Stopped
or Terminated), and the command that initiated the
process. To kill a job, we use the kill command, like
this:

(25)

kill %N && fg where N is the job number.

The && part is used to tell the shell to wait until the
kill command has finished, and then to move to the
foreground. If we don't add that bit, the the job will
be terminated, but not removed from the job list. Just
a bit of tidying up.

I know this all sounds rather complicated but it can
all be summarized like this.

Command &: Start a job in the background

Control + z: Suspend the job currently running in
the background

bg N: Continue suspended job N in the background
fg N: Move suspended job N to the foreground
jobs: List all jobs

kill %N && fg: Kill job N

For the glxgears example, we dumped the output to
/dev/null. When a job is running in the background, it
will still produce output, which it will happily spew out
to the screen as you are trying to work on another
command. So, it is usually a good idea to redirect
the output of a back-grounded job to a log file, or
similar, and to dump any error messages.

e.g., find Jusr -iname *.0gg > musicfiles
2>/devinull &

This will put the names of any files found into the file
'musicfiles’, ignoring the case of the file name, and
discard any error messages, such as trying to enter
directories for which you don't have access. If you
don't want to keep any output at all from the
application, then there is a special construct that will
grab everything, and send it to where ever you like,
usually /dev/null.

command 2>&1 Idev/null

All this means is append STDERR to STDOUT, and
send them both to the same place. Don't worry if this
doesn't seem very intuitive. It is a very commonly
used expression, but you would be amazed at how
many experienced users who use it don't understand
it!

Backing up and Archiving

The problem with data backup is that most people
don't do it. They may mean to, they may forget, they
may find it too complicated, or they may not do it
regularly enough. Even those who doggedly back up
their data regularly, rarely bother to check that the
data can actually be restored, which rather defeats
the object. If you are one of the very small majority
who don't fall into this category, then you can skip
this next part.

For the rest of us, there is some good news. There is
some software available that will do all our backups
for us, will never forget, and will check the integrity of
the backup automatically. And best of all, it is free!
It's called Linux.

Before starting a backup strategy, you should
consider what you want to backup, how often, and to
where. There are various types of backup.

Full - What it says

Differential - backup only what has changed since
the last full backup

Incremental - backup only what has changed since
the last backup of any type

Clone - Usually used for the backup of entire file
systems, mindlessly copying everything block by
block

Synchronized - An exact copy of all data in a
location, optionally deleting data in the target
destination that no longer exists in the source
location.

Each has it's pros and cons, and there are many
dedicated applications that will do backups in any
way that you want. The Linux/Unix ethos is to use
multiple small applications to perform more complex
tasks, and using this, we can produce a tailor made
backup system and automate it. First off then, let's
take a look at some of the applications that are
available. All of the following are either installed by
default, or available in the PCLinuxOS repositories.

cp: Yes, the simple copy command, when used with

the -a (archive) option, is a simple (but not very
efficient) backup utility.

(26)

tar: One of the oldest utilities, its name means 'tape
archive', and it simply takes a list of files and lumps
them all together. For this reason, the resulting file is
often referred to as a 'tarball'. It is often used in
conjunction with a compression utility, like gzip or
bzip2, and it can do this automatically. To create a
compressed archive of all files in the current
directory (here | assume that jane is in her Pictures
directory) and write it to a folder in janes home
directory named junk, | might use the command

tar -czf ~/junk/mypics.tar.gz *

-c create an archive

-z filter the output through gzip to compress it
-f use the following file name for the archive

Although Linux doesn't need dos-like file name
extentions such as .exe or .zip to determine the file
type (the information is in the meta data pointed to
by the files inode), it is helpful and traditional to do
so with the tar command. If | had substituted -j for -z,
then tar would have used the bzip2 utility. Then, the
extension .tar.bz is usually used.

To list the files in an archive use:
tar -tvf mypics.tar.gz
To extract the files use:

tar -xf mypics.tar.gz {list of file names}

If no file names are given, then all files are
extracted. Tar is really only suitable for backing up a
small number of files at a time. For large or full
backups, there are better tools available. When
using compression utilities, be aware that they are
not very fault tolerant, and the loss of even one byte
can render the entire archive unreadable. This is a
very real danger when using media such as floppies
or CDs.

$ tar -czf ~/junk/mypics.tar.gz *
$ cd ~/junk/

Dec 6 11
¢ > $ tar -tvf mypics.tar.gz
- jane/jane 13165 2009-12-01 13:23 snapshotl.png
- jane/jane 7460 2009-12-01 13:22 snapshot2.png
- Jjane/jane 2511 2009-09-05 18:39 snapshot3.png

- Jjane/jane 2481 2009-09-05 18:58 snapshot4.png
- Jjane/jane 4059 2009-09-05 19:08 snapshot5.png
- jane/jane 8435 2009-09-05 19:39 snapshot6.png
- jane/jane 7138 2009-12-01 12:33 snapshot7.png
junk $ tar -xf mypics.tar.gz snapshot5.png
junk $ 1s -1

dd falls into the 'clone’ category, and is an extremely
useful command to know how to use.

There are lots of options for this command, but most
of the time you can get by with just these four:

if={name of the input file}
of={name of the output file}
bs=(block size}

count={number of blocks to transfer}

Notice the = sign in the options. This is mandatory.
The important thing to remember when using dd is
not to mix up the input file and the output file, as you
will get no prompt from dd — just blind obedience.
So, if you wanted to copy a partition to an empty
partition and you mixed them up, then you would
overwrite the first partition with blank data from the
empty partition losing all data, no questions asked.

To copy a single file:

dd if=lhomeljanel/contacts2
of=/homeljaneljunki/contacts

$ dd if=/home/jane/contacts2 of=/home/jane/junk/contacts

0+1 records out
60 bytes (60 B) copied, 0.000218269 seconds, 275 kB/s
jan $ 1s -1 junk/

jancodaisy > - §
To copy an entire partition (make sure that the
destination is large enough):

dd if=/dev/hdal of=/dev/hdfl to do a partition to
partition copy

or

dd if=/dev/hdal of=/backup/hdal.img will make an
image file of the partition.

This way, entire file systems can be cloned and then
restored with

dd if=/backup/hdal.img of=/dev/ihdal

(27)

Here, /dev/hdal should not be mounted, and not be
part of the currently running operating system.

If you have a 1TB drive, then be prepared for a long
wait.

The first 512 bytes of a hard disk contains the MBR,
or Master Boot Record, and the Partition table. If this
gets corrupted, then your system may not know how
to boot up, or how your drive is partitioned. This can
be fixed, if you are patient and have some in depth

knowledge of file systems (or some understanding

friends), but life can be so much easier if you have a
backup of that data. Here dd is ideal. su to root, and

type:

dd if=/dev/hda of=/backup/hda_mbr.img bs=512
count=1

2 count=l

This means copy one block of 512 bytes from/dev/hd
a to the image file /backup/hda_mbr.img.

(Note: no partition number is entered as the MBR
relates to the whole drive, not to any particular
partition).

Now if you do have problems, you can simply
restore those 512 bytes. To restore the MBR, the
drive should not be running the current operating
system.

Boot up from the Live CD.

In a terminal, su to get root privileges.

Make a directory, e.g mkdir Imnt/hda,

Mount the drive there, mount /dev/hda Imnt/hda

Make sure that the image file is where you think that
it is, i.e Ibackup/hda_mbr.img, as running from the
Live CD, the directory /backup may not exist.

dd if=/backup/hda_mbr.img of=Imnt/hda bs=512
count=1
vy

B

Stop and re-read this command at
least twice before pressing enter.

. You should now be able to reboot
L. the original system.

If you want to see what a MBR looks like, (it won't
mean much) type:

cat /backup/hda_mbr.img

Then you will get a load of gibberish on the terminal,
and the chances are that your prompt and anything
you type on the command line are now gibberish. If
that is the case then don't panic. Just type:

reset

and all will be well.

Mondo archive is an excellent and extremely reliable
full system backup tool which is run from the
command line, and includes a graphical interface in
the terminal. There is an excellent step by step
tutorial in the PCLinuxOS forums by catlord17
(http://Iwww.pclinuxos.com/forum/index.php/topic,597
05.0.html).

Rsync is one of my all time favorites. It is used to
synchronize two sets of files, either locally or
between remote machines, even if they are
thousands of miles apart. It includes options for
compression, can delete files on the destination that
no longer exist in the source location, and can be
used over ssh (secure shell). Best of all, it only
transfers the differences between files on the source
and destination, and if interrupted, will resume from
the break point when restarted. To give you an idea
of the power of this command, | maintain a copy of
the PCLinuxOS repositories on a local hard drive,
and automatically update it in the early hours, when
network traffic is lightest. The full repository is
currently around 17GB, but | download only what
has changed and delete obsolete packages. The
command to do this is quite long, but as it is
automated, | don't have to remember it. If you're
interested it looks like this:

rsync -aPvz --stats --delete --log-
file=lhome/pete/update.log --exclude=SRPM*
ftp.heanet.ie::publ/pclinuxos/apt/pclinuxos/2007/
Idatalrepo/2007/

partimage is another command line utility that
includes a graphical interface and is quite easy to
use. It will make an image of an unmounted
partition, using compression if required, and will only

(22)

http://www.pclinuxos.com/forum/index.php/topic,59705.0.html

copy used blocks. It allows you to include comments
that can be useful when restoring. For example, you
could include the size and type of file system of the
original partition. It will also allow you to split up the
image so that it may be saved to multiple CDs or
DVDs.

Creating a backup

Now that we have a few tools to play with, it is time
to decide what to back up and where to save it. The
size of the backup may determine where to back up
to, but ideally, you want to back up to a different
device than the one that holds the original data. If a
hard drive dies, then you will be relieved that your
back up didn't go with it. If you are doing a full
system backup for disaster recovery, then mondo
archive or partimage are probably the way to go. If
you want to incrementally backup the files from a
particular location that have changed over a set time
period, then first you have to get a list of those files.
The find utility includes an option to locate files
based on the time they were last modified. To find all
files in a directory that have changed in the last
week

find lhomeljanel -mtime -7 \! -type d
-mtime looks for the file modification time.

Here | have excluded files of type directory with \!
type d.

The ! means 'not’, and must be preceded with a back
slash to prevent the shell from interpreting it as a
special character. This is known as 'escaping’ the
character.

For files changed in the last week use:
find /homeljane/ -mtime -1 \! -type d

If we redirect the output of this command to a file,
then we can use that file to feed tar:

find lThomeljanel -mtime -1 \! -type d >
Itmpinewfiles
tar -cv -T Itmp/newfiles -f Ibackup/newfiles.tar

The -T option tells the utility to get its list of file
names from the following file.

Reinstalling a Linux system these days is a relatively
quick and trivial task, but getting everything back
exactly as you like it can be more of a headache. All
of your personal settings are stored in your
/home/{user_name} folder. This is convenient, but
has the disadvantage that as you own those files,
then you can do whatever you like (or dislike) to
them, and this is what new users usually do and
experienced users, who should know better, still
often do. This directory then is a prime candidate to
have a backed up copy somewhere safe that is fully
updated automatically and regularly. Sounds like a
job for rsync.

First, we need to collect a bit of information.

It is necessary to preserve ownership, groups, links
and modification times.

We want to back up /home/jane but not all of it.

We don't want to copy the contents of junk/, a folder
jane uses to store temporary stuff.

There is a second hard drive mounted at /backup,
and this is where we want our backup.

As this is going to be an automatic process, we
should save the output of the program to a log.

No compression — data integrity is paramount, and
the destination has several hundred GB free.

Obsolete files should be deleted.

The backup should be run daily, 1:30 AM, and also
weekly at 3:00AM Sunday under a different name.
This gives a week to have a change of mind about
some settings. The odd times are chosen to be
when the system is likely to be under a low load, and
to avoid any conflicts due to daylight saving time
changes.

Recovery should be a trivial task.
The command then should look like this:
rsync --archive --exclude=junk/* --delete --log-

file=/backupl/daily/jane-log /lhomeljane
Ibackupldaily/

()

This must be all on one line. If your command
includes more options and your editor can't cope
then you will need to use the line continuation
sequence

\enter.

It works like this. When you reach the end of a line
and press the enter key bash inserts an invisible
character known as a 'newline'. If we type \ before
pressing the enter key, then this newline character is
‘escaped' or in effect ignored. The effect of this is
that you can continue typing extremely long
commands and bash will see it as one long line. |
think the limit is 2048 characters, but | have never
reached it, and | have typed in some pretty long
commands!

Here, | have used the long version for all the
options, as this is going to be saved to run
automatically, and this format makes the command
easier to follow in the future.

The trailing slash on directory names is important.

Ihomeljane backs up the directory jane and all the
files and directories under it into the directory
/backup/daily.

Ihomeljanel would not create the directory jane but
would copy all of its contents into /backup/daily.

Similarly we want the directory junk/ to be created so
that it is still available if we do a restore, but we don't
want its contents. So, we exclude only the contents
with junk/*.

When you have built a long command, you don't
want to have to retype it every time. You could
create an alias but a better, and much more powerful
method, is to include it in a script. Scripts can be
very long and complicated, or short and to the point
like this one.

Make two directories in the destination — here the
destination is /backup:

mkdir /backup/{daily,weekly}

The curly braces include a comma separated list if
directories to create.

Open your text editor of choice, and type in the
following (copy and paste from the magazine doesn't
always work as it carries over some of those
‘invisible' characters that are used to typeset the
article).

#!/bin/bash

#Script to back up my home directory

rsync --archive --exclude=junk/* --delete --log-
file=/backupl/daily/jane-log /homeljane
Ibackupldaily/

Don't forget that the long rsync command must all be
on one line.

I'll Explain all the weird stuff at the beginning when
we get to more involved scripts.

Save it to your home directory under whatever file
name takes your fancy (e.g. home-bkup). Having it

in your home directory has the advantage that it also
gets backed up — self preservation.

Change the files permissions to make it executable.
s@daisy > ~ $ chmod +x home-bkup
~ % 1s -1 home-bkup
1 jane jane 151 Dec 6 12:57 home-bkup*

~ P

Type ./home-bkup and the script should execute —
check it out. ./ is needed to tell bash to look first here
for the file, which is not where it would normally look
for commands.

Is -al Ibackup/daily

~ % ls -al /backup/daily

jane-log

Make a copy of the file with a new name for the
weekly backup.

cp home-bkup home-bkup-weekly

Open this new file in an editor, and change the
destinations in the command to read:

rsync --archive --exclude=junk/* --delete --log-
file=/backupl/weeklyl/jane-log lhomel/jane
Ibackup/weekly/

Save the file.

Check that this one also worked. You should have a
copy of your home directory and a log in each of the

(20)

two new directories that we created in Ibackup/ -
daily/ and weekly/.

Now, to backup your home directory, all you need to
do is to run that script. This, however, is where a lot
of backup strategies fail, as you have to remember
to run it. So let's automate It. To do this, we use a
utility called cron. This utility is used by the system to
run certain things at a particular time, like updating
the database that is used by the locate command.

To set up cron, su to root. We need to use:
crontab -e
The -e puts us in edit mode in the vi editor.

The top line of the file shows the required format for
the file. The first five columns are for when we want
the command executed. An asterisk in any column
means 'from the first to the last'. In the day of week
column, 0 and 7 both represent Sunday.

So to execute our two scripts at 1:30AM every
morning and 3AM Sunday respectively we add lines
as shown.

Type o to open a new line below the top one and
type in these two lines.

30 1 *** |[homeljane/lhome-bkup
0 3 ** 7 [home/jane/lhome-bkup-weekly

Press the escape key, followed by a colon, and you

will get a prompt at the bottom of the screen. Type
wq (write then quit) to save the file and then quit.

1-31) month(1-12) 7) command
up

Type crontab -l to see a listing of the file and check
your typing.

Tomorrow you can check to see if it worked!

Visit Us On IRC

* Launch your favorite IRC Chat Client software
(xchat, pidgin, kopete, etc.)

» Go to freenode.net

* Type "/join #pclinuxos-mag"
(without the quotes)

PCLinuxOS.

http://www.linfx.com

Cornnzirle] Lin2 [ncarr:1e2 Jricro: Z:re 5

by Peter Kelly (critter)

The Linux File System

The Linux file system is built like an upside down
tree starting with the root directory /. Don't confuse
this with the user name root. This is the root of the
file system. From this root, grow branches, and from
there grow other branches — ad infinitum. The first
level of branches is mostly standard, although other
distributions may add special directories, and you
may also add some yourself. Where a file or
directory is located within the file system is known as
the path. The path of these first level directories is
always l{directory name} e.g. /home. As you make
your way through the file system, every time you
reach a new branch, like a fork in the road, you add
another / so that you would refer to a particular file
as

Ihomel/jane/mydir/myfilel.

This file is three levels deep, and this way of
referring to it is known as the absolute path. When
jane is in her home directory lhomeljane, she would
refer to the same file as mydir/myfilel. This is
known as the relative path, relative to where you are
in the file system.

The standard PCLinuxOS file system looks like this:

| The root of the file system

| bin Commands for use by the users

| boot Files used by the boot loader (grub)

| dev Hardware is treated as files and here is
where you can access them

| etc Miscellaneous scripts and system
configuration files

I home | Users home directories are in here

| | jJane Janes home directory

| | john Johns home directory

| initrd A special directory used by PCLinuxOS at
boot time

| lib Common libraries of routines used by
various applications

| media Where the system mounts external media

(e.g. thumb drives)

| mnt Other files systems are often mounted here

| opt Additional 3rd party application software

| proc memory resident file system that tracks the
system state

| root The super user's home folder

| sbin System administration and privileged
commands

| sys Avirtual file system akin to /proc storing
dynamic kernel data

| tmp Temporary system-wide storage area

| usr Other installed applications, documentation
and shared resources such as icons

| var Various log files, mail and print spoolers etc.

Any distribution that you encounter will not deviate
too much from this, although there may be some
small changes

All of this takes no account of which hard drive or
storage device any of these files are actually on.
That depends upon where on the tree the file system
that is resident on the device is mounted. Note that
/proc & /sys do not exist on any hard drive. They are
memory resident only. Try du -sh Isys to display the
disk usage of the /sys directory.

Mounting and unmounting file
systems

When you boot the system, the device nominated as
the root of the file system is given the path /. The
installation process will have created the necessary
folders at the first level, as shown above. If you
elected to have a separate /home patrtition, then the
/home directory will point to that partition. The
partition is then said to be mounted at /home. You
may add or remove additional devices as you see fit
to anywhere on the file system. To mount a device
on the file system, you need to provide certain
information:

* The type of file system used by the device

* The mount point — where on the file system the
device is to be mounted

» The device name or id

* Any options that control how the device is
accessed and mounted

The type of the file system could be one of very
many recognized by the system but the ones thet
you are most likely to encounter are

eext2 The second extended file system also
known as the linux native file system.
There was a first, ext, but it is no longer
supported and shouldn't be used.

This is ext2 with the addition of a journal.
I'll explain journals in a moment.

The next stage in the development of the
ext file system. This is still in the testing
stage but usable if you want to
experiment.

e ext3

* ext4

()

It should not however be used in 'mission
critical' situations such as servers or for
the boot partition of a system until your
distribution approves it.

* reiserfs A popular journalling Linux file system

* is09660 Used on CDROM and DVD disks

« vfat Used to access Microsoft fat file systems.

* ntfs-3g The open source driver to access ntfs file
systems used by Microsoft Windows.

* nfs Networking file system, not to be
confused with ntfs.

eswap The linux swap file system type

The device name may be given in various ways,

Idevixxxx This is the traditional way

LABEL={the partition label} This can be used to
simplify recognizing what is on a particular partition.

UUID={Universally Unique Identifier} This is the
system that is currently used by PCLinuxOS in
letclfstab

While UUID may be confusing to look at, it has
advantages in multiple partitioned systems. If you
are happy to let the system look after things, then
this is best left alone. If you want to take control,
then either of the other two methods might be a
better bet.

The default options are usually ok but in certain
cases you may need to specify others, the most
usual ones being:

e auto or noauto to mount or not when the
command mount -a (all) is issued or when the

system is booting.

« user to allow an ordinary user
to mount the file system, only
that user or root may unmount
the file system.

« users allow all users to mount
or unmount the file system

* ro or rw to mount the file
system read only (e.g. a cdrom)
or read write.

To use the mount command to
manually mount devices, you
usually need root permissions,
and you would issue commands
like these:

Jaev/nd i 1
Results of fdisk - command.
To discover which file system devices are attached
mount -t auto /devicdrom /media/cdrom -o ro to your system use the command fdisk -I.
-t specifies the file system type, here we are
requesting that the system recognizes the file
system type automatically. If this option is omitted
then the mount command will
attempt to guess the file system

type.

To then find the label, uuid and file system type of a
device you wish to mount issue the command blkid
{device name from fdisk - command}

If you need to use labels or uuid, then use -L {label}

-0 is the start of a list of options, separated by or -U {uuid}

commas, that control the
method of mounting the device.

ro read only is the only option
used in this example.

mount -t ntfs-3g /dev/sdal

Imnt/windows to mount an ntfs formatted windowsP
artition

To create a label for an ext2, ext3 or ext4 file system
use the command tune2fs -L {label}

mount on its own gives a list of all mounted file
systems and their types, Adding -l will also show the
labels. This information is actually the contents of
the file Jetc/mtab, which is one of the places the
system keeps a list of mounted file systems. The
other is /proc/mounts. Try cat /proc/mounts.

mount -a mounts all devices listed in letc/fstab,
except those with the option noauto

If a device is listed in letcl/fstab, then the mount
command will take information from there and
require you to supply only the device name or the
mount point.

To remove a device from the file system, the
command is umount. Notice the missing n.

umount /dev/icdrom

umount -a unmounts all file systems. A file system
cannot be unmounted if a file or directory in it is
being accessed. The root file system / of a running
file system cannot be unmounted

Why bother with unmounting a file system? Well, this
is all to do with keeping things in sync. Linux is a
multi-user, multi-tasking system, and as such, has to
use system resources like memory and processor
time wisely. Unless instructed to the contrary, data is
written to file systems asynchronously, i.e. not when
the command is issued, but when the system deems
it prudent to do so. Even if you are the only user on
the system, you may have several applications that

periodically write to a file, like perhaps an autosave
feature or a scheduled event like a backgrounded
backup task. All of the data cannot be written at the
same time, and so it is sidelined until it can be.
Removing a floppy disk without first unmounting it,
for example, might cause data loss and will confuse
the device management system. The umount
command synchronizes the file system before
releasing it.

Journalled file systems were introduced to go some
way towards protecting file systems against
corruption when asynchronous data writing is used
and the system suffers a catastrophic event, such as
a power failure. Writing data is a multi-part
operation, known as a transaction which involves the
data, inodes, the directory entries and other
metadata. If any part of this transaction is not
completed when the system is brought down, then
file system corruption occurs. On a large file system,
it can take a while to rectify, walking through inode
by inode, block by block. In a journalled file system,
when a transaction is authorized, the processes
involved in the transaction are recorded in a central
area before any data writing is committed. If the
transaction is incomplete when the crash occurs,
then on reboot the journal is replayed, and the
transaction is then completed. This makes recovery
much quicker. An ext2 file system can be converted
to ext3 without data loss by using the command
tune2fs -j Idev/xxxx.

For a device like a CD drive, once the drive is
unmounted, you can get the disk out with the
following command:

eject -T (-T toggles the state of the drive tray

between open and closed, repeat the command to
close the tray)

You could, of course, just push the eject button on
the device. But if the PC is under the desk, you may
it useful to put a shortcut on your desktop to this
command. eject should automatically unmount the
volume if you have not already unmounted the
volume. If you have an external floppy drive or an
iPod (such as a second generation Nano), you must
issue the eject command before disconnecting the
device, or removing the floppy from the external
drive. eject ensures that any data left in the buffers
is flushed to the device, preventing corruption of the
data on the diskette or device.

For those devices that need to be mounted at boot
time, or are required to be regularly mounted or
umounted, the system keeps a look up table that
provides this information. It is found in the /etc
directory and is called fstab.

Ane isy % cat /etc/fstab
!devfhdal / ext3 defaults 1 1
/dev/hdaé /home ext3 defaults 1 2

none /proc proc defaults @ @
/dev/hdab swap swap defaults @ ©
none /dev/pts devpts mode=0620 0 @

The above is a fairly standard fstab. Look at the first
line. It tells the system that when mounting
Idev/hdal, it should be mounted to /, it uses the
ext3 file system and the default options should be
used to mount it. The last two numbers aren't
relative to mounting partitions, but for completeness.
The first of the two numbers is known as the dump
number. Dump is a back up program, and checks

(a3)

this number to decide whether or not to include this
file system in a backup. Zero means no. The second
of the two numbers is used to decide the order in
which file systems should be checked using the fsck
utilities. It is usual for the root file system to have a
value of 1 here, and other file systems that are to be
checked to have a value of 2. If a file system is to be
skipped in a 'full' file system check, then it must have
a value of 0 here.

Working with partitions and file
systems

One thing that causes a lot of people problems is the
management of partitions. Not that there is anything
inherently wrong with partitions, or that they are
difficult to understand. Just sometimes they, or the
configuration files used to access them, get screwed

up.

A hard drive can be divided up into smaller chunks
to separate data, or to house different operating
systems. Initially, when the partitioning system was
proposed and hard drives were small (just a few
Megabytes. My first hdd was 40 MB Wow! All that
space.), four partitions were deemed sufficient, but
as hard drive sizes increased, a work around was
found to allow more than four partitions The original
partitions were designated primary partitions, and if
one of those was sacrificed and created as an
extended partition, then this could be used as a
container to house logical partitions. There can be
only one extended partition in the partition table.

Linux has a lot of utilities for dealing with partitions,

from small cli-only utilities, to full blown graphical
applications. PCLinuxOS Control Center uses the
excellent diskdrake to provide a 'radically simple'
graphical utility suitable for even the newest to
Linux. We are going to use a cli-only utility called
fdisk.

There several reasons to use fdisk. Messing about
with partitions can be very dangerous, and it is all
too easy in a graphical environment to get ‘click
happy' and wipe out a full system (although if a new
file system hasn't been written to the device, it is still
possible to recover). In a console, things tend to be
more focused on the task at hand. A small utility like

fdisk has fewer commands, and here simple is good.

You will always find fdisk or something similar on
any distribution.

We've already used fdisk -1 to get a list of devices
but if we now type

fdisk {device}

Here, device is the device name without a partition
number, as fdisk works with entire devices. So use

Idev/hda, not /Idev/hdal.

Typing m (enter) at any time will give us a list of
available commands.

n for help): m

rtition
artition types

v r th
write tab
extra functioc

Command (m for help):

There are only sixteen commands available,
including 'm' for the list of commands.

Linux uses DOS partition tables, so it is unlikely that
you will ever need the 'b' and 's' commands, and for
now | think that option 'x' should be avoided. That
leaves us twelve commands with which we can
destroy our system, but only one command will do
that: the 'w' command. Until that command is issued,
none of the changes that you have made are
permanent. The 'q' command is our 'get out of jail
free card.' Whenever we issue the 'q' command, we
are returned to the system without committing any
changes. Instantly and without fuss.

As for the remaining commands.

*a Some versions of the MSDOS/Windows boot
loader would only expect to see one, and only

(25)

one, primary partition marked as boot-able,
usually the first partition on the disk. Linux boot
loaders grub and lilo just ignore this if set. If you
are dual booting Windows and Linux, it does no
harm to leave this as is.

e ¢ Normally this flag is not set under Linux and if
set can cause problems with overlapping
partitions — best left alone.

«d Delete a partition

|l Print a list of all partition types known by fdisk

*n Create a new partition

* 0 Create a new partition table replacing the

existing one — this removes all partitions on the

device. Use with care.

Print the partition table to screen

Change the partition system id — this

hexadecimal code tells the system what kind of

file system to expect on the partition, e.g. 83 for
ext2/ext3 file system

e u Switches the display units between cylinders
and sectors

* v Verify the integrity of the partition table

L]
T

You can experiment with these few commands until
you feel comfortable, just don't use the 'w' command
unless you mean it. 'q" will get you out.

If you look at the output of the 'p' command in the
screen-shot, we can get a picture of the layout of the
entire device — IDE hard drive no 1 in this case.

(NOTE: IDE is now called PATA (for Parallel ATA) to
distinguish it from SATA, or Serial ATA. PATA and
IDE are interchangable terms when referring to the
technology.) The drive is organized into a total of
16644 cylinders, and so all of the partitions must be
created on cylinders 1 to 16644. If this is not the
case, then you have a problem. Partition numbers 1
to 4 are reserved for primary partitions, whether or
not they exist. Logical partitions are numbered from
5 upwards.

Partition 1 occupies cylinders 1 to 8591 and is a
primary partition.

Partition 2 is also a primary partition created as an
extended patrtition and occupies the rest of the disk
so there can be no more primary partitions. This
partition runs from cylinder 8592, the next available
cylinder, to cylinder 16644 which is the end of the
disk.

Partition 5 also starts on cylinder 8592 running up to
cylinder 9649. This is the first logical partition.

Partition 6 occupies the remaining cylinders and is
the second logical partition.

This all works very nicely, using all of the available
space on the disk. Er! well no, not really. Let's

change the display units from cylinders to sectors
with the 'u’ command.

Then, we can see some ragged edges between
starting and ending numbers. This is perfectly
alright. Partitions must start on a cylinder boundary
with the exception of partition 1.

Resizing partitions is a risky business. A partition is a
container for a file system, so you could use fdisk to
delete the partition from the partition table and then
create a new partition. You would then need to
resize the file system using a tool like resize2fs. Or,
you could use a tool like gparted or diskdrake to do
the job for you. In any event, it is a dangerous
process, and not one one that | would be prepared
to undertake without having a trusted, recent backup
of all the data on that partition. If such a backup is
available, then a better strategy would be to delete
the partition, create a new patrtition, create a new file
system on the new patrtition, and re-populate the
partition from the backup. (NOTE: this latter method
is also, typically, faster.)

Before a partition can be mounted it must contain a
valid file system.

The partition has been created with an id of 83,
which tells the system to expect a file system of type
‘Linux Native,' so we need to create one. The
command for this is mkfs, and initializes or formats

(36)

the file system, laying out stuff like the directory
tables and inode tables and setting up block sizes
etc. Unlike partition table creation, this process
overwrites existing data.

If you type mkfs into a terminal and then press tab
you will see that there are many variations of the
command. You can use the one that fits the file
system type you want to create, or you can use the
mkfs command with the -t option and supply a file
system type.

WARNING! Just make sure that the target
partition is correct, as you will get no warning
and all data on the partition will be overwritten!

Of course, there are a multitude of options that you

can pass to the command to control exactly how the

file system is created, but in matters as fundamental
as file systems, | prefer to accept the defaults. You
can see from the output that automatic file system
checking will take place at predetermined intervals,
but if you want to do it yourself, then the drive should
be unmounted. To check the root file system, it is
easiest to reboot from a Live CD, and check the file
system while running from the Live CD.

To check a file system, use the command fsck. Each
file system has its own specific checking utility, and
fsck is a 'front end' for the these utilities. If the file
system type is known, then it can be specified with
the -t option, or fsck will look in /etcl/fstab for it. Of
course if you know the name of the correct utility you
can use that directly.

fsck -t ext3 /dev/hdb5 or
fsck.ext3 Idev/hdb5

Whether or not a disk is to
be automatically checked is
determined by the value in
the sixth column of
letclfstab. The frequency
of checking ext file systems
is determined when the file
system is initialized, but this
can be overridden with the
utility tune2fs -c to change
the total number of mounts.

Use tune2fs -i to change the interval in days. Add w
or m to the number for weeks or months.

Swapspace

This is a file system that always provokes a lot of
discussion. It has its own set of tools, and is used by
the system, not the users. One question that always
crops up is “How much should | have?” The answer
is always the same: “That depends.”

Swap space was introduced in the days when
memory was very expensive, and therefore very
limited. When system load was high, it was possible
to run extremely low on memory, which meant that
the kernel had a busy time trying to juggle things
around just keep the system running. This resulted
in a slow and unresponsive system. With swap
space, the system administrator could give the
system some storage space to use as temporary
memory. Because the data in memory had to be
'swapped' in and out of memory to the much slower
hard drive space, it was always only a temporary
solution, and if swap space was being frequently
used, it was a sure sign that the installed memory
was insufficient for the demands placed on the
system.

Today, things have changed and modern systems
have large amounts of memory. The rule of thumb
used to be to have twice as much swap space as
RAM. If you are limited to a small amount of
memory, say 256MB, then 512MB of swap would be
reasonable. If however your machine is fitted with
2GB or more, then twice that would be rather
ridiculous, and could even slow down the machine. If

(=7)

you do a lot of memory intensive tasks, like video
editing, then you may benefit from more swap
space. If you use a laptop that utilizes hibernation,
then you will need a little more swap than RAM, as
all the contents of RAM are copied to swap space
when hibernation is entered, and copied back to
RAM on resume. The thing to do is to monitor
memory usage, either with a graphical system
monitor, or with the command free. You can always
add more.

Swap space can be in the form of a partition or a file.
Partitions are the preferred method, as they tend to
be somewnhat faster, but a swap file can be a great
temporary measure if the system suddenly finds
itself low on ram and swap. To create a swap
partition, you can use fdisk and create a partition of
type id 82 (Linux swap).

To create a swap file is slightly more involved. You
will need to create a file of the desired size, and then
write data to it. To create a swap file of 128Mb
(131072 blocks of 1024 bytes) called myswap in the
root directory, and to fill it with null characters, use
the command dd if=/devi/zero of=Imyswap

bs=1024 count=131072.

It is advisable at this stage to make sure that the
system has actually written all the data to the file.
The command to do this is simply sync.

This file then needs to be formatted/initialized to the
swap file system.

mkswap /myswap 131072

Now, the file permissions need to be changed so
that only the system has read/write access.

chmod 0600 /myswap

The file is now ready to be used, and can be added
or removed with the commands swapon /Imyswap
and swapoff Imyswap

Do not delete the file without first removing it from
swapspace with the swapoff command.

If you want to make it permanent, then add an entry
to the letclfstab file.

Imyswap swap swap defaults 0 0

There are a couple of system directories that need a
little more explanation, /dev and /proc.

Idev

This is a strange directory, unlike most of the others
that are full of files that are recognizable. Actually,
this directory is full of files, device files. As already
stated, Linux treats everything as a file, so device
files are how we communicate with the systems
hardware. They come in two distinct types: block
devices that store data, and character devices that
transfer data. A hard drive is a block device, and a
keyboard is a character device.

In a long directory listing, Is -I, the first
character of every line denotes the file
type. - for a normal file, d for a directory
and | for a link to another file. If we type
Is -1 Idev, we notice that apart from a few
lines starting with d or I, the majority
start with a b or ¢ to denote a block or
character device file. Every device on
the system, and some that aren't, will be
represented here, along with a few
strange ones. We've already met
Idevinull and /devizero.

If you look at the listing for the block and character
devices, you'll notice something strange about the
file size. It is given as two numbers, separated by a
comma. This is not a file size, but the major and
minor device numbers. The major number is specific
to the type of device, and is used by the kernel to
determine which driver to use to communicate with
the device, while the minor number refers to a
particular device. By example:

(38)

The first IDE/PATA channel on a PC can support up
to 2 devices (master/slave), and is allocated block
major 3. The first full device is then hda — block 3, 0.
Partitions on the device are then numbered
sequentially.

hdal 3,
hda2 3

(and so forth).
The second device is hdb - block 3,64

hdbl 3,65
hdb2 3,66 etc.

The second ide channel (hdc & hdd) get major
number 22

SCSI devices (including SATA drives and USB mass
storage devices) start at major number 8, but
partitions minor numbers repeat every 16, giving a
maximum of 15 partitions per device.

Partitions on SCSI devices are numbered similar to
the IDE/PATA devices, but are named as follows:

sdal 8,1
sda2 8,2

This will always be the case for systems equipped
with SATA drives. In the case of USB mass storage
drives, including external hard drives and memory
card readers (SD/MMC, MemoryStick,
CompactFlash, etc.), the device name will be sdx,
where x is determined by the order in which the USB

mass storage devices are detected. For example, if
a laptop has a SATA drive and a built-in card reader
that reads and writes SD/MMC and MemoryStick
cards, then these are named sda for the hard drive,
and sdb for the card reader. Plug in a external hard
drive, and that hard drive is named sdc.

Iproc

There is a wealth of information in here, and it
reflects the entire state of the system. Unfortunately,
it is not easy to find what you want, and when you

do, you will probably be overwhelmed by the amount

of detail. If you look inside this directory, you will see
a lot of sub-directories with numbers for names.
Each one of those contains all the details about a
running process. The numbers are the process id,
and the first one of these folders has the name 1,
and contains information about process 1 - init, the
first process to be run on boot up. If you poke about
in these directories, you can find out things like the
full command line that was used to invoke the
process, it's current working directory and a whole
bunch other stuff the the kernel finds really cool, but
is of little use to mortals. Get past these numbered
directories, and things start to make more sense. If
you want to know all about your processor, try cat
/proc/cpuinfo. Want a list of modules? Use cat
/proc/modules. Most of the files in here are read
only, but some of them, notably many in the
/proc/sys directory, are writable. Even though the
effects of any changes only last until the next reboot,
you should be careful in here.

For example, to temporarily change the machines
hostname you could type as root echo
newhostname > [proc/sys/kernellhosthame. Start
a new terminal to see the effect.

Want To Help?

Would you like to help with the PCLinuxOS
Magazine? Opportunities abound. So get
involved!

You can write articles, help edit articles, serve
as a "technical advisor" to insure articles are
correct, create artwork, or help with the
magazine's layout.

Join us on our Google Group mailing list.

http://groups.google.com/group/pclinuxos-magazine
http://groups.google.com/group/pclinuxos-beautification-2009
http://pclinuxos.com/?page_id=188

Cornrrizirie] Linn2 [nrarrzie2 [ricros P:ire o

by Peter Kelly (critter)

Globbing

What? It's an unusual word that has it's roots in the
way command line interpreters used to handle
things in the early days of Unix.

The bash shell recognizes certain characters as 'wild
cards' that can be used to specify unknown or
multiple occurrences of characters when specifying
file names. We've already met some of these 'wild
card' characters back in chapter 3, "' and '?'. These
are the most common ones, but groups and classes
of characters can also be used. When the shell
encounters these 'wild cards' in a file name, it
substitutes the meaning of the wild card at that
position, a process known variously as “file name
expansion”, “path name expansion”, “shell
expansion” or “globbing”, depending on how
pedantic or geeky you want to be.

The following can be used:

* means match at this position any one or more
characters

? means match at this position exactly one character

Individual characters can be grouped in square
brackets:

[a,f] matches either a or f
[a-m,w-z] matches only a character in the ranges
a-m or w-z

[a-z,0-9] matches any lowercase letter or any digit

[lfa-c] matches any character that is not in the
range a-c
[fa-c] same as above

~ % 1s -d [mM]*

musicfiles

Another way of specifying groups of characters is to
use pre-defined classes. These are groups of
characters defined in the POSIX standard and the
syntax is [:class:].

The defined classes include:

[:alnum:] any alphanumeric character [0-9,a-z,
A-Z]

[:alpha:] alphabetical characters [a-z,A-Z]

[:blank:] characters that don't print anything like
spaces and tabs (also known as
whitespace).

:digit:] numeric digits [0-9]

:punct:] punctuation characters

:lower:] lowercase characters [a-z]

:upper:] uppercase characters [A-Z]

:xdigit:] any character that may form a part of

a hexadecimal number [0-9,a-f,A-F]

— e

So, Is -d [[:upper:]]* will find all files and directories
that start with an uppercase letter.

- % 1s -d *[[:digit:]1]*

newfile2

Note that two pairs of square braces are required
here, one pair to define the start and end of a range
and one pair to contain the class.

All of these methods may be combined to provide
the file set that exactly matches your requirements.
This method of file name expansion may reduce or
increase the number of files to which your
commands are applied.

The dot character "." is not included in these
expansions. Type Is -al in your home directory and
you will see quite a few files that begin with this
character. These are so called hidden files which is
why we needed the -a option to the Is command to
display them. The first two file names (in any
directory) are the names of directories, '." and "..",
and these refer respectively to this directory and to
the parent of this directory. Why do we need these?
One reason is to be able to refer to a directory
without specifying its name.

cd .. takes you up a level
cd ../.. takes you up two levels and so on.

If you write a script and want to execute it, then it
has to be on your PATH (a list of directories to be
searched for executable files), or you have to supply
the full absolute address for the file. Typing
Imyscript {this directory/myscript} is easier than
Ihomeljane/myscripts/myscript.

For security reasons, it is inadvisable to add your
home directory to your PATH.

If then, the dot character is not included in these
expansions, how do we include hidden files if we
want them to be a part of our list of files to operate
on, but we don't want the two directory shortcuts "'
and ".."?

()

Suppose we want to rename all files in a directory
with the extension '.bak’, but some of these files are
hidden 'dot’ files? If we try to rename all files,
including those beginning with a dot, then we will
include . and .., which we didn't intend (you will
probably get an error).

We could make two lists of files, one of normal files
and one of dot files with the two unwanted files
filtered out, or we could could get the shell to do our
dirty work for us. The bash shell has a lot of options
and is started by default with those options set that
your distribution settled on as being most useful for
everyday use.

For a list of those options that are set (on) type
shopt -s. The shopt command is used to display
the status of shell options. shopt -u lists those that
are unset.

The one that we are looking for here is called
dotglob.

Setting this option on expands the dots that signify a
hidden file, but ignore the two directory shortcuts.
shopt -s dotglob turns it on, while shopt -u
dotglob turns it off again. Don't forget to do this or
you will remain in unfamiliar territory.

To rename all of the files, we need to use a loop. |
will explain the mechanism of this when we get to
shell scripting — the real power of the shell. For now
just follow along.

Is -al shows 2 unwanted directory shortcuts and 5
files, 2 of them hidden dot files.

The "' does not expand to show the hidden dot files
or the directory shortcuts.

shopt -s dotglob
ls *

=B

By turning on the shell option dotglob, the wild card
"*! expands into all of the files but ignores the
directory shortcuts.

We now can run our loop, and a check reveals that
all files have been renamed:

do mv $f $f.new; done

Turning off the option reverts to the normal mode of
dot files being unexpanded.

The bash shell expansion is not limited to file
names. There are six levels of expansion recognized
by bash. They are, in alphabetical order:

Arithmetic expansion.
Brace expansion.

File name expansion.
History expansion

Shell parameter expansion.
Tilde expansion.

If you are not at least aware of these, then you may
find yourself inadvertently using them and then
wondering why you are getting such weird results.

Arithmetic expansion. The shell can do limited
integer-only arithmetic, its operators all have have
different meanings under different circumstances in
the shell. They are:

e+ Addition

e - Subtraction

«* Multiplication

e/ Division

« ** Exponentiation (The exponentiation operator is
more usually " however this is used for
negation in the shell expansion rules.)

* % Modulo (remainder

The syntax is $((expression)). Again, note the two
sets of braces. Expressions may be nested within
the first pair of braces and standard operator
precedence is observed. Whitespace (e.g., spaces
and tabs) has no meaning within the expression.

5 echo $((3+4))

$ echo $((%$((3+4))/2))

(41)

3+4=7
7/12=3 Integers only!

Tilde expansion. we may as well get this one out of
the way now as the only way we are likely to use it is
very simple.

We can use the tilde '~' as a shorthand way of
referring to our home directory by using it as the first
letter of an expression.

cd ~ change to our home directory

cd ~/mydirl change to the sub-directory mydir in my
home directory.

If we follow the tilde with the login name of another
user then the command is relative to that users
home directory. cd ~john change to johns home
directory. No forward slash is required between the
tilde and the users login name but you obviously still
need the correct permissions to enter the directory if
you are not the owner or a member of the directories

group.

So is that all there is to tilde expansion. Of course
not, this is Linux!

A system administrator might use it to assign
expansions to commands by manipulating the
directory stack — but you really didn't want to hear
that did you?

Brace expansion is particularly good for a situation
where a sequence of files or directories need to be
created or listed.

The syntax is {a,b,c} or {A..J} or {1..8}.

For example, to create a set of directories to hold a
years notes

> notes § mkdir notes_{jan,feb,mar,apr,may, jun, jul,aug,sep,oct, nove,dec} 2010

notes § 11

You can use brace expansion wherever you need to
put a set of items into a common expression.

History expansion. When you type the command
history, you are presented with a numbered list of
previously typed commands. Entering Inumber
(where number is the number in the list) executes
that command, this is history expansion at work.
There is more to it than that, but it shouldn't bother
us for the moment.

Shell parameter expansion is at its most powerful
when used in shell scripts, but in its simplest form, it
takes whatever follows a '$' and expands it into its
fullest form. What follows the $ is often an
environment variable, which may optionally be
enclosed in braces i.e. ${var}, but it can be much
more.

Environment variables are names given to things
that need to be remembered in your current working
environment. An example of this is where you
currently are in the file system. To find this out you

might issue the command pwd. This information is
stored in the environment variable named

PWD (uppercase is customary and does help to
distinguish variables from other text. Whatever the
case of the name you will have to use it as Linux is
case sensitive).

Typing the command echo $PWD uses parameter
expansion to the expand the variable name PWD to
the full path of your current directory before passing
it to the command echo.

To see a list of environment variables and their
contents that are currently set up in your
environment, type the command env.

Some you will recognize, and you can always add
your own by use of the export command in your
.bashrc file.

export SCRIPTS_DIR="/homeljanelscripts”

After that, the command cp my_new_script
$SCRIPTS_DIR will make sure that it goes to the
correct place, providing of course that it exists..

With all these different ways that the shell can
interpret what you type, we need some method of
controlling what gets seen, as what and when. After
all, although the bash shell is very powerful, we do
want to be remain in control.

Control of shell expansion is exercised through the
use of quotes. In Linux you will find four different
kinds of quotes in use:

(42)

1. “” The decorative 66 — 99 style used in word
processors — these are of no interest to us.

2. ” Standard double quotes

3. Single quotes

4, " Back ticks, also known as the grave accent

The last three all produce different results in the
bash shell.

Double quotes tell the shell to ignore the special
meaning of any characters encountered between
them and to treat them exactly literally, with the
exception of $, ~ and \. This is useful if we want to
pass the shell a file name containing an unusual
character or space. However, because the $ is still
interpreted, variables and arithmetic will still be
expanded. But after expansion, everything between
the quotes will be passed to the command as a
single word with every character and all white space
intact. The interpretation of the back tick you will see
in a moment, just remember that here it is
preserved. The backslash allows us to escape the $
or ~ so that we may pass expressions such as “You
owe me \$100".

[jane@daisy > ~ § echo "you owe me \$100"
| you owe me $1060
| jane@daisy > ~
lvou owe me 00

$ echo "you owe me $100"

See the difference?

Single quotes are the strongest form of quoting and
suppress all expansion. Whatever you put between
these gets passed on verbatim. No changes
whatsoever.

$ echo 'You owe me §'‘expr 4 * 25°

jan isy >~
You owe me $100

Back ticks evaluate and execute the contents and
then pass the result to the command. Here 'You
owe me $'is passed literally as it is enclosed in
single quotes. The next part, “expr 4 * 257,
evaluates the expression 4 * 25 to be 100 before
passing it to the echo command. The backslash is
needed before the asterisk to escape its alternative
meaning as a wild card.

All of this globbing and wild card stuff should not be
confused with regular expressions (often
abbreviated to regexp), even though they do share
some common features.

regular expressions are used to manipulate and
scan data for a particular pattern and is something
much bigger.

You've already used regular expressions when we
used the grep command. The command grep
(global regular expression print, from the original
line editor ed which used the command glrelp! to
achieve the same thing.) has two brothers known as
egrep and fgrep (there's another brother known as
rgrep but we don't see much of him).

We use the grep command to find a matching
pattern of characters in a file, set of files or in a
stream of data passed to the command. The general
syntax is grep {options} {pattern} {files}.

It can be used directly as a command, or used as a
filter to the output from some other command.

To find janes entry in the /etc/passwd file we could
use either grep jane /etc/passwd or cat
letclpasswd | grep jane

$ cat /etc/passwd | grep jane

:jane:/home :/bin/bash

In the above examples, jane is a pattern that grep
tries to match.

Regular expressions are sequences of characters
that the software uses to find a particular pattern in
a particular position within the target data.

Why bother with regular expressions at all?

Linux uses plain text files for most of its
configuration, for the output from commands and
scripts and for reporting on system activity, security
and potential problems. That's an awful lot of text,
and to be able to search accurately for some
particular information is one of the most important
skills a command line user can master.

To use regular expressions we use three main tools:
grep is used to search for a pattern

sed is a stream editor used to filter and manipulate
data streams. This enables us to pass pre-
processed data directly on to the next command, to
a file or to stdout/stderr.

awk is a scripting/programming language used to
automate pattern searches and data processing.

Many other commands, such as tr (translate), use
regular expressions, but if you can get a grip on
these three tools, then you are on your way to a
higher level of command line usage.

Before we go on to discuss grep and sed (I'll leave
awk until we have done some programming in the

()

bash scripting section), we need a good basic
understanding of regular expressions. Regular
expressions are used by line based commands and
will not match patterns spread over two or more
lines. | just thought that you ought to know that.

In regular expressions certain characters have a
special meaning and these are known as meta
characters. For any meta character to be taken
literally, and to lose its special meaning, it has to
‘escaped’, usually by preceding it with a backslash
character, as we have done previously with wild card
characters. The following are meta characters, but
not all are recognized by all applications.

. The dot character matches any single characters

* * The asterisk matches zero or more occurrences

of the preceding character.

e N The caret is a tricky one, it has two meanings.
Outside of square brackets, it means match the
pattern only when it occurs at the beginning of
the line, and this is known as an anchor mark.
As the first character inside a pair of brackets it
negates the match i.e. match anything except
what follows.

$ Another anchor mark this time meaning to only
match the pattern at the end of a line.

\<\> More anchor marks. They match a pattern

at the beginning \« or the end \» of a word.

\ The backslash is known as the escape or
quoting character and is used to remove the
special meaning of the character that
immediately follows it.

[1 Brackets are used to hold groups, ranges and
classes of characters. Here a group can be an
individual character.

\{n\} Match n occurrences of the preceding
character or regular expression. Note that n
may be a single number \{2\}, a range \{2,4\}
or a minimum number \{2,\} meaning at least
two occurrences.

\(1) Any matched text between \(and) is stored
in a special temporary buffer. Up to nine
such sequences can be saved and then later
inserted using the commands \1 to \9. An
example will make this clearer.

e + Match at least one instance of the preceding
character/regexp. This is an extended
regexp (ERE) — see later.

e ? Match zero or more instances of the
preceding character/regexp. This is an
extended regexp (ERE) — see later.

L Match the preceding or following
character/regexp. This is an extended
regexp (ERE) — see later.

e () Used for grouping regular expressions in

complex statements

With these we can find just about any pattern at any
position of a line. Some of these meta characters do
take on a different meaning when used to replace
patterns.

grep

First off egrep is exactly the same as grep -E and
fgrep is exactly the same as grep -F so whats the
difference?

fgrep uses fixed strings to match patterns, no
regular expressions at all, and so it does actually
work faster.

egrep is actually a more complete version of grep.
There are two sets of meta characters recognized by
regular expressions, known as BRE and ERE, or
Basic regular expressions and Extended regular
expressions. BRE is a subset of ERE. BRE is used
by grep, and egrep uses ERE. BRE does not
recognize the meta characters + ? and |, and
requires the () { } meta characters to be escaped
with a backslash. For now, we'll stick to plain old
grep. Just to set the record straight, rgrep, the other
brother, is just grep that will re-curse down through
directories to find a pattern match.

The grep command comes with a set of options that
would make any Linux command proud. Here I'll go

only through those options that normal people might
use.

-A -B & -C followed by a number, print that
number of lines of context After, Before
or around the match — this helps to
recognize things in a long text file.

-C Only output a count of the number of
occurrences of a match for each file
scanned.

-E Use the extended set of regular

expressions (ERE). The same as using
the command egrep.

-F Don't use regular expressions — treat all
pattern characters literally. The same
as fgrep.

()

-f filename Use each line of the named file as a
pattern to match.

-h Don't output the filename when searching
multiple files.

-i Ignore case

-n Output the line numbers of lines

containing a match.

-r Recurse through sub-directories.
-S Suppress error messages
-v Invert the match to select only non-

matching files

-w Match only complete words. Aword is a
contiguous block of letters, numbers and
underscores.

That's enough theory for now, so let's go visit the
family grep and do a few examples.

/bin/bash

t:/bin/bash

If we were unsure how jane spelled her name (jane
or jayne), then to search for her name in the
/etc/passwd file we may be tempted to use the ***
wild card with grep j*ne letc/passwd but this would
fail, as the shell would expand j*ne before passing it
to grep, which uses regular expressions to match
the search pattern.

We could use grep ja[n,y] letc/passwd.

This would however also match names such as
janet.

; ane[]ayne /etc/passwd

/bin/bash

To get around this, we could use the extended set of
regular expressions available with the -E option or
the egrep command. grep -Ew ‘jane|jayne’
letc/passwd match either jane or jayne. The -w
option matches only complete words. The quotes
are needed to prevent the shell expanding the
vertical bar symbol into a pipe.

How many users have bash as their default shell?

grep -c 'Ibin/bash’ Jetc/passwd

jane@daisy > ~ $ grep -c '/bin/bash’

i

/etc/passwd

jane@daisy > ~ $ I

To search for files in your home directory that
contain a match, burrowing down through
subdirectories and discarding warnings about
inaccessible files, we could use a command such as
grep -rs glenn ~/*

jane@daisy > ~ $ grep -rs glenn ~/¥

fhome/]anefcontacts lin n
ontacts/contacts:glenn

/home/jane/mydir/personal

Multiple use of the grep command can simplify
complex searches. To search for directories that
begin with an uppercase or lowercase 'm', use Is -l |
grep Md | grep [M,m]. This matches all lines output
from a long directory listing that begin with a 'd' (i.e.,
are directories). The output from this is then piped

through another grep command to get the final
result.

ji sy >~ % 11 | grep °\d | grep ' [M,m]’
drwrr Xr-x 2 jane Jane 4096 Feb 26 20@? M

As you can see from the examples, grep is a
powerful tool to find the information that you want
from files or from a commands output. It is especially
useful if you don't know where that information is, or
even whether it exists at all, in the places that you
are looking.

Sometimes you know exactly what information is
available but you want only certain parts of it. Linux
has a command that will help you to get exactly what
you want.

cut

The cut command is only really useful when you
have tabulated data but as so many commands
output data in that format it is a tool that is really
worth knowing about and it is really simple to use.

When you examine a file of tabulated data, you'll see
groups of characters separated by a common
character, often a space, comma or colon. This
common character is known as a delimiter, and the
groups of characters are known as fields. The cut
command searches each line of text looking for the
delimiter, and numbering the fields as it does so.

(45)

When it reaches the end of the line, it outputs only
those fields that have been requested. The general
form of the cut command is:

cut {options}{file}
The most useful options are:

-c list Select only characters in these positions

-d Specify the delimiter. If omitted, the default
is tab. Spaces need to be quoted -d” “

-flist Select the following fields

-s Suppress lines without delimiters

List is a sequence of numbers separated by a
comma or, To specify a range, by a hyphen.

If we look at a line of data from the /etc/passwd file,
we will notice that the various 'fields' are delimited
by a colon :.

cat /etc/passwd | grep jane

ane:/home/jane:/bin/bash

The first field contains the users login name and the
fifth field, known for historical reasons as the gecos
field (from General Electric Comprehensive
Operating System), and contains the users real
name and sometimes some optional location
information, although PCLinuxOS doesn't use this
additional information.

To extract the users login names and real names we
use the command like this: cut -d: -f1,5
letclpasswd.

This tells the command to look for a colon as a
delimiter and to output fields 1 and 5.

All of this is fine for nicely ordered data as we find in
the /etc/passwd file, but in the real world things don't
always work out like that. Take for example the Is -l
command. This outputs a nicely formatted long
directory listing. The catch here is that to make the
output look nice and neat, the Is command pads the
output with extra spaces. When our cut command
scans the line using a space as the delimiter it
increases the field count each time it encounters a
space and the output is, at best, unpredictable.
Many Linux commands pad their output in this way.
The ps commands output is another example of this.

If | wanted to extract the owner, size and file names
from this listing it would be reasonable to assume
that | needed fields 3,5 & 9 and that the delimiter is a
space.
d - % 1s -1 | cut -d" " -f3,5,9

jane Feb

jane 4096 85:25

jane 4096

As you can see, the output is not as expected. We
could try the -¢ option, ignoring fields and counting
the characters from the start of the line.

ja isy > ~ $ 1s -1 | cut -cl4-18,24-27,41-

jane 0 contacts
jane 4096 Desktop/
jane 4096 Documents/

But apart from being tedious and error prone, if the
directory listing changes slightly then the numbers
will be different and the code is not re-usable, we
would have to start over.

- $ 1s -1 | cut -cl4-18,24-27,41-

jane 5:34 contacts
jane 5:25 Desktop/
jane 2010 Documents/

jane cts 5:58 Friends/

To work around this, we need to prepare the output
from the Is command by filtering out the extra
spaces. We can do this by using a command we
have met once before. The tr command translates
data, and we used it previously to change text from
lowercase to uppercase. If we use the tr command
with the -s option followed by a space, it sqeezes
repeated spaces out of the file or data stream that
we feed it.

~$1s -L | tr -s " "

- 1 jane jane © Feb 7 05:34 contacts
drwxr-xr-x 3 jane jane 4096 Feb 7 05:25 Desktop/
rwxr-xr-x 2 jane jane 4096 Feb 7 2010 Documents/
drwxr-xr-x 2 jane contacts 4096 Feb 7 05:58 Friends/

We can now cut out exactly the data the we want.
EL aisy > ~ $ ls ~L | tr =5 " ™

jane 0 contacts

jane 4096 Desktop/
jane 4096 Documents/
jane 4096 Friends/

Two other commands, rather simple but occasionally
useful, so worth mentioning, are paste and join.

(45)

Typing the command name followed by --help will
give you enough information to use these
commands, but a simple example may better show
their usefulness and their differences.

jane@daisy > Friends § cat friendsl
jane 12 High Street Newtown

Newtown
1432 Long Avenue 0ld tawn
jane isy > Friends $ cat friends2
jane age 22 height 5'-4"
john age 19 height 5'-10"
janet age 28 height 5'-5"

john 12 High Street
janet

> Friends $ join friendsl friends2

jane 12 High Street Newtown age 22 height 5'-4"

john 12 High Street Mewtown age 19 height 5'-10"
janet 1432 Long Avenue 0ld town age 28 height 5'-5"

Suppose we have two files containing different data
about common things such as these:

The names in these files are common but the data is
different. We can merge the data from both files with
join.

With paste we can add data we cut from one file to
the end of another file on a line by line basis

y > Friends $ cut -f2-4 friends2 > friends3
> Friends $ paste friendsl friends3
High Street Newtown age 22 height 5'-4"

john 12 High Street MNewtown age 19 height 5'-10"

janet 1432 Long Avenue 0ld town age 28 height 5'-5"

sort

When you have found the data that you want, cut
out all but the required information, and joined or
pasted the results, it may not be in the order that you

want. Here, Linux has an exceptionally powerful &
quick utility to do just that.

The syntax of the sort command is sort {options}
{file(s)}. If more than one file is supplied then the
combined contents of the files will be sorted and
output.

The options available for the sort command make for
a rather comprehensive utility. These are the most
useful ones:

-b Ignore leading blanks in the sort field

-c Only check whether the data is sorted but do
not sort

-d Sort in dictionary order, consider only blanks
and alphanumeric characters

-f Treat upper and lowercase as equal

-i Consider only printable characters. This is
ignored if the -d option is specified.

-k Specify the sort field

-n Numeric sort

-r Reverse the sort order

-t Specify the field separator

-u Output only the first of one or more equal lines.
If the -c option is specified, check that no lines
are equal

A couple of these options need further explanation.

sort doesn't have the hangups about field delimiters
that commands like cut have. Fields, as far as sort
is concerned, are separated by the blank space
between them, even if these blank spaces contain
multiple non-printing characters. This is generally a
good idea, but occasions arise when this causes
problems, as in /etc/passwd, which has no blank

spaces. In these cases, the field separator can be
specified with the -t option. sort -t: -k5 /etc/passwd
would sort the file on the 5th (users real name),
using the colon to decide where fields start and end.

Specifying the sort field used to be a strange affair,
but with the -k option it is now reasonably straight
forward.

-k {number} Specifies the field in position
{number}.

Numbering starts at 1. More complex sort field
arguments may be specified, such as which
character within the sort field to start or end sorting
on. | like to take a 'learn it if you need it' approach to
these things, as | find that | rarely need such
features and | don't like to clutter my poor brain
unnecessarily.

Is -1 | sort -k9 Sorts a directory listing in dictionary
order on the 9th field (file name).

~ % 1s -1 | sort -k9

contacts2
contacts-link
Desktop/
Documents/
Movies/
Music/

mydir/
mydirl/
newfile
newfile2
Pictures/

tmp -> //tmp/

jane jane 44 Nov 10
jane jane 39 Nov 10
jane jane 4096 Nov 16
jane jane 4096 Feb 6
jane jane 4096 Feb 26
jane jane 4096 Feb 25
jane jane 4096 Nov 10
jane jane 4096 Nov 10
jane jane 69 Nov 1@
-rW-r--r-- jane jane 2174 Nov 10
drwxr-xr-x jane jane 4096 Feb 8

L rwX rwx rwx jane jane 5 Nov 12

Is -1 | sort -nrk5 Sorts the listing by the 5th field (file
size) in reverse numerical order.

(47)

~ % 1ls -1 | sort -nrk5

3 jane jane 4096 Nov 16 08:34 Desktop/
jane jane 4096 Nov 10 20:45 mydir/
jane jane 4096 Nov 10 106 mydirl/
jane jane 4096 Feb 8 D Pictures/
jane jane 4096 Feb 6 04:23 Documents/

jane jane 4096 Feb 26 3 Movies/

jane jane 4096 Feb 25 PO7 Music/

jane jane 2174 Nov 10 newfile2

jane jane 69 Nov 10 :10 newfile

jane jane 44 Nov 10 contacts2

jane jane 39 Nov 10 contacts-link
Lrwxrwxrwx jane jane 5 Nov 12 139 tmp -> //tmp/
total 44

An awful lot can be done with these few commands
and a little practice. If you want to do more, then of
course you can. This is where the sed stream editor
excels, enabling search and replace, insertion,
deletion, substitution and translation to multiple files
at the same time if that is what you want. sed can be
a simple substitution tool or as complex as you like.
We'll be meeting sed very soon.

[HAVE NEWY\ &=
PACKAGES =
FOR YOUR

REPO! ‘ Y

The NEW
PCLinuxOS
Magazine

Created with
Scribus 1.3.5

Reach Us On The Web

PCLinuxOS Magazine Mailing List:
http://groups.google.com/group/pclinuxos-magazine

PCLinuxOS Magazine Web Site:
http://pclosmag.com/

PCLinuxOS Magazine Forums:

PCLinuxOS Magazine Forum:
http://pclosmag.com/forum/index.php

Main PCLinuxOS Forum:
http://www.pclinuxos.com/forum/index.php?board=34.0
MyPCLinuxOS Forum:
http://mypclinuxos.com/forum/index.php?board=157.0

ONe elieK LiNUX |:;‘

A place for L ‘ux beginners! i (14

Join Us!

http://www.linpc.us
http://pclinuxos.com/?page_id=215
http://pclinuxos.com/?page_id=213
http://pclosmag.com/forum/index.php
http://www.oneclicklinux.com
http://groups.google.com/group/pclinuxos-magazine
http://pclosmag.com
http://pclosmag.com/forum/index.php
http://www.pclinuxos.com/forum/index.php?board=34.0
http://mypclinuxos.com/forum/index.php?board=157.0
http://www.scribus.net

Cornrnizirie] Lirg2 Incarrze2 [rrroi Z:rre 7/

by Peter Kelly (critter)

Shell Scripting

A script is simply a list of instructions that we want
the system to execute, and in its simplest form it will
do just that, line after line, obediently and blindly,
with no concern of the consequences. Writing scripts
is not difficult, but care must be taken to ensure that
the instructions passed in the script perform what is
intended, which unfortunately is not always what is
actually written.

There are two common types of computer programs:
compiled programs and interpreted programs.
Compiled programs have their code converted to a
machine language that the processor can
understand, but is unintelligible to humans. This
enables them to execute extremely quickly, but
makes them more difficult to alter. Interpreted
programs are mostly plain text files that are read line
by line by the interpreter, which then instructs the
processor. Shell scripts are interpreted programs,
and in a bash script, the bash shell is the interpreter.

When we are at the command line, we can type in
commands and have the shell perform some
function for us. Sometimes, we type in the same
commands regularly over a period of time, and at
times, the commands get quite long and complex.
Other times, we have to type in a whole series of
commands to get our end result. If this sounds like
you, then it is time to find out about scripting, and let
the machine do the tedious work. The bash shell
scripting language is a vast topic, and you will see
many large volumes devoted to the subject in book
stores. Fortunately, you need only a small part of all

that wizardry to become a proficient script writer, and
to be able to understand some of the scripts which
are used to manage and control your system.

To write a script, you have to be able to type text into
a file, and to then make that file executable. That
can be as simple as entering text on the command
line as follows:

cat > myscript

echo Hello type Ctrl+D here to end the text entry
and close the file.

chmod +x myscript

Typing .Imyscript would then execute the script and
print the word Hello to the screen. (The ./ is needed
to tell the shell where the script is, as it is not in any
of the usual places where executable files are to be
found).

The method above works, but if we really want to
write scripts, we should use a text editor, not a word
processor, as these include strange formatting
sequences that would confuse the shell. Any text
editor will do.
My personal
favorite is

File Edit View Bookmar ..
there are

: ENERE o2k © many others.

#!1/bin/bash Ideally, you
want an editor
echo Hello that supports
| syntax
highlighting.
Any programming language comprises many things
such as comments, keywords, variables, text etc.

hello.sh - KWrite

Syntax highlighting displays these things in different
colors to make it easier to find a certain item.

If you want to be able to do this using a terminal
editor, then nano supports syntax highlighting, but by
default it is turned off. To enable it, you need to copy
a file to your home directory. In a terminal, type cp
lusrishare/nanol/sh.nanorc ~/.nanorc.

Now every file that you edit in nano that ends in .sh
will have syntax highlighting suitable for the bash
scripting language. Other files will not be affected.
The .sh extension is not required for scripts, but is a
way of telling nano that “this is a bash script, so
highlight it accordingly,” and it does help to
distinguish your scripts from other files. It is also a
good idea to create a scripts directory in your home
folder and store all your scripts in there. If you write
a script that you find really useful, you can always
transfer it to the /bin directory so that that is always
available, as that directory is almost certainly in your
PATH environment variable. Before you do that,
please make sure that it is fully tested and won't one
day spring a nasty surprise on you or any other user
of the system.

When an

GNU nano 2.0.9

executable file is
passed to the shell,
it passes it to the
kernel, which then
starts a new
process and
attempts to execute it. If this is not a compiled,
machine language file (usually referred to as a
binary), then this will fail and return an error to the
shell, which then searches the file for commands
that it knows how to process. It may get lucky, as in

(22)

the simple myscript example above, but as there
are many scripting languages, this is not guaranteed
and so we should tell the shell which interpreter to
use. If the very first characters on the first line of a
script are #! (known as shebang), then bash will take
the rest of the line to be the fully qualified path of the
interpreter. For a bash script we should always start
with #l/bin/bash, or #!/bin/sh /bin/sh is usually a
symbolic link to /bin/bash. For a perl script for
example, we might use #!/usribinl/perl.

What needs to be in a script? Well just the one line
#l/bin/bash is technically a script, although it
wouldn't do very much. In fact, it would do absolutely
nothing more than start and end a process. To get
results, we need to give it some commands, which it
will execute one after another, unless we tell it to
do things differently. This is the clever bit. We are
in control and now have so much more power than
when we simply typed in commands at the terminal.
With a script, we can execute commands in the
order that we want to, when we want to, dependent
upon certain conditions that we define or that arise
from system activity, and we can do this repeatedly
or until a certain condition is met. We can pass
options and arguments to the script at start up, or
read information from a file or from the user at the
terminal.

We could write a simple script to search a directory
for all bash scripts like this:

T i
- i/l hac
#H. /01N 0as0n

grep -rs "#!/bin/bash" fusr/bin/#*

(Don't forget to make it executable with chmod +x).

The quotes are needed so that the script doesn't
treat everything after the '# as a comment. The
second argument /usr/bin/* has no quotes, as we do
want the shell to expand the * into a list of files.

We could do this at the command line without a
script, or even define an alias that we might call find-
scripts: alias find-scripts='grep -rs "#!/bin/bash"
lusr/bin/*'

Both of these would work, but would also find the
pattern anywhere in a file or text embedded in a
binary file, not only at the beginning, which denotes
a bash script, but they suffice as examples.

About variables

To make the effort worthwhile, we can enhance our
script by passing it the name and path of the
scripting language on the command line, making its
use similar to a regular Linux command.

find-scripts {search pattern}

To do this we need to use variables. We've met
variables before. They are the names of bits of
information that we or the shell need to keep track
of, such as PWD, which holds the absolute path
name of our current working directory, and PATH,
which is a colon separated list of directories to
search for executable files. These are Environment
Variables used by the shell, but generally available
to the user. You can also create your own variables.
They are known as variables because if, for example
you did a cd to another directory then the contents
of PWD would change: Their contents are variable.

Many programming languages require that variables
are declared before they are used, and that the type
of content that they will be assigned is defined in
that declaration. The type of content may be a string
(of characters), an integer, floating point number or
any one of many other types. Variable declaration is
available in bash using the keyword declare, but for
most purposes, it is not necessary, and the variables
you create can be used to store strings or integers,
as you require. Bash doesn't handle floating point
arithmetic and needs to use utility commands, such
as bc, when that functionality is required.

Bash also supports one dimensional arrays — one
dimensional means that you can't (easily) have
arrays of arrays!. An array is really just a group of
variable elements with the same name and an index
starting at zero for the first element. Arrays in bash
are extremely flexible. For example, if we create an
array named pets with the command pets=(cat dog
horse), then pet[0] refers to the value cat and
pet[2] the value horse. If we now add
pets[4]=parrot then that element gets added to the
array even though pets[3] hasn't been assigned.

To access the contents of a particular element of an
array we need to use brackets to enclose the index
and braces to prevent expansion by the shell:

pets=(cat dog horse)
pets[4]=parrot
echo ${pets[1]}

$
&
)
&
!

echo s$pets[1]

(=)

echo ${pets[1]} correctly prints out dog, but echo
$pets[1] prints cat[1] as the shell expands the
variable pets, with no index number, to the first
(zero) element of the array, and then echo treats the
string [1] literally and adds it to the text on screen.

Quite often arrays in scripts are iterated through in a
loop and their values passed directly to the rest of
the code for processing which is a great way of
getting things like lists of names or music into a
script..

There are, of course, some special ways of
accessing certain information about an array.

pets=(cat dog horse)
pets[4]=parrot

isy » ~ echo ${pets[*]}
horse parrot

' $ echo ${#pets[*]1}

o

aisy

- 5 echo ${'pets[*]}

$ echo ${#pets[2]}
echo ${pets[*]}

Outputs all the elements of the array

echo ${#pets[*]}
Outputs the number of elements in the array

echo ${#pets[2]}
Outputs the length of element [2] in the array

echo ${lpets[*]}
Outputs all the indexes of elements present in the

array. Notice that the unassigned index 3 is not
present.

Special bash variables

The shell has many variables at its disposal and
uses some special ones to access arguments
passed to a script. The first argument is known as
$1, the second as $2, and so on. In the unlikely
event that you need to pass more than 9 arguments
to a script, then the number must be enclosed in
braces, as ${14} for the 14th argument. $0 contains
the name of the command as used on the command
line.

variables. If | had used single quotes here, then the
$1 would not have been expanded, leaving grep
searching for files containing the pattern of
characters #!$1.

We can further refine the script by passing it the
search directory as a second argument, which will
be stored in $2. We now call the script like this
find-scripts /bin/bash /usr/bin, passing two
arguments to the script and making it much more
flexible.

H1G1" §2

H I S hinn/Shac
| A

grep -rs

Modifying the script like this

i bl T =1
I QinS oa

greﬁm—fs “#fel“ /usr/bin/*

allows us to call the script and pass it the absolute
address of the interpreter.

Ifind-scripts /Ibin/bash to locate our bash scripts or
Ifind-scripts lusr/bin/perl to find any perl scripts.
We use the fact that the shell stores the first
argument passed to it in the variable $1.

Notice that here | have changed the single quotes to
double quotes, which allow variable expansion ($1 is
replaced by the first argument) to take place, but still
treats the #! literally. This is where syntax
highlighting is invaluable. In the first example, the
“#1lbin/bash” in the command expression is
displayed all in red text, which is the color used for
strings. In the second example, #! is in red text,
while $1 is in green text, the color used to highlight

During execution, $1 will be expanded to /bin/bash,
and $2 expands to lusr/bin.

These enhancements unfortunately add a
complication to the script, as we are now required to
pass these arguments to the script. If we fail to pass
the correct number of arguments to the script, then
the variables $2 and/or $1 will be undefined. That
means their value is not controlled by us and will
contain a null value. As we are only reading files
from a directory here, then we shouldn't cause any
damage. But if the script was writing or deleting stuff,
then the consequences can be imagined. You can
get into a whole lot of trouble with an empty gun!
This simple example should be enough to convince
youl!

|DON'T TRY THIS!

rm -rf ISRETURNED_PATH

rm remove

(51)

-r recursing through the sub-directories
-f without asking or prompting

ISRETURNED_PATH: if this variable is undefined,
then it expands to / and the command completes as
“remove everything below the root directory
recursively, without prompting” and deletes
everything in and below the root directory — your
entire system is gone, permanently and without so
much as a “thank you”.

Conditional Programming

Another special variable is $#, which contains the
number of arguments passed to the script. We can
use this to check that all is OK before proceeding.

#!/bin/bash

if [s# 1= 2]

then.

. echo Usage: Find-scripts pattern directory >2
1 exitl .

fi

LNV AW

grep -rs "#!'s1" $2

I've put line numbers in to help clarify things. They
have nothing to do with the script are not typed in.

Lines 3 to 7 contain a construct known as an if-then
statement. After the initial if keyword on line 3, we
test a condition for truth. Here the test [$# 1= 2]
checks if the total number of arguments passed is
not equal to 2. The spaces inside the brackets are
very important.

If it is true (that there are not 2 arguments) we
execute lines 4,5 and 6. Line 4 is the entry point to

commands that are only executed when the test
condition is true. Line 5 echoes a usage message to
the terminal. Line 6 exits the script, as we don't have
sufficient information to continue, and returns a
value of 1. Line 7 ends the conditional statement
and allows the script to continue.

In this instance we don't use the return value of 1,
which by convention signifies a failure — 0 means
success. Other numbers up to and including 125 are
available for the programmers use. If this script was
called from another, then that parent script would
know the outcome from this value and could then act
accordingly.

If you use the script in a couple of months time, or
even a few years down the line, you might not
remember what pattern and directory the script is
complaining about. It is even less likely that another
user would know. One thing we can and should do is
to add comments to the script, detailing what is
going on. A comment is any text on its own line, or at
the end of a line, that starts with a # (with exception
of the initial #! which has special meaning to the
shell). This text is ignored by the script.

then, # Pi
echo Usage:

exitl # Qu

nt out a message
Find-scripts pattern directory =2

it the

There are more comments in this file than you may
usually find, but an informative header can save a lot
of head scratching. Indentation can also help to
make a script more readable.

The test used in the example above, $# 1= 2, is
derived from the negation symbol . And with the
equality symbol = together, they give a 'not equal
test.' But what if we want to test if a file was a
directory or if the file even exists? Well, the shell has
its very own test command with the following basic
syntax: test {expressionl} {condition}
{expression2}.

Using this command the test in the if statement
would have been written like this: if test $# -ne 2. As
a matter of the fact, the two forms are completely
interchangeable, and the conditions available for the
test command can be used equally well by the
original format [$# -ne 2]. The shell has many
functions like test built in to it. They are known,
unsurprisingly, as shell builtins. The keyword test
is a builtin, as is [, which has the same meaning.

The use of tests is so central to shell scripting to
determine the flow of the program that you should
be aware of the tests available. | give here a
complete list of the tests available as described in
the official man page documentation.

Where EXP is an expression

EXP is true

EXP is false

both EXP1 and EXP2 are true
(logical and)

either EXP1 or EXP2 is true

(logical or)
‘52’

(EXP)
I EXP
EXP1 -a EXP2

EXP1 -0 EXP2

Command Line Interface Intro: Part 7

where STR i

-n STR

STR

-z STR

STR1 = STR2
STR1 !'= STR2

s a string

the length of STR is nonzero
equivalent to -n STR

the length of STR is zero
the strings are equal

the strings are not equal

Where INT is an integer

INT1 -eq INT
INT1 -ge INT

INT1 -gt INT
INT1 -le INT

INT1 -1t INT
INT1 -ne INT

2 INT1 is equal to INT2

2 INT1 is greater than or
equal to INT2

2 INT1 is greater than INT2

2 INT1 is less than or
equal to INT2

2 INT1 is less than INT2

2 INT1 is not equal to INT2

Where F is a file

F1 -ef F2
F1 -nt F2

F1 -ot F2
-b
-C
-d
-e
-f
-9
-6

b B e e W M |

-h

n

-k F
-LF

F1 and F2 have the same device
and inode numbers

F1 is newer (modification date)
than F2

F1 is older than F2

exists and is block special
exists and is character special
exists and is a directory
exists

exists and is a regular file
exists and is set-group-ID
exists and is owned by the
effective group ID

F exists and is a symbolic link
(same as -L)

F exists and has its sticky bit set
F exists and is a symbolic link
(same as -h)

F exists and is owned by the
effective user ID

F exists and is a named pipe

F exists and read permission is
granted

b W e e e M |

-s F F exists and has a size greater
than zero

-S F F exists and is a socket

-t FD file descriptor FD is opened on a
terminal

-u F F exists and its set-user-ID bit is
set

-w F F exists and write permission is
granted

-X F F exists and execute (or search)

permission is granted

That list should give you some idea of the flexibility
you have when performing a test.

Note! The -e test for the existence of a file can also
be written -a, but | choose to ignore this, as it is too
easy to confuse with the -a (logical and) test. You
may, however, see it used in other scripts.

The if-then statement may also contain the else
keyword, which works like this:

if {condition}

then

commands to execute if the condition is met
else

commands to execute if the condition is not met
fi

In the next example, | use the command read, which
is an easy way to get user input into a variable as a
script is running.

#!/bin/bash

echo Did you enjoy the show? y/n
read ANSWER
if [SANSWER = y]
then echo "Yes"
else,
! echo "No"
fi

After the first echo command, the script pauses until
the user enters something at the keyboard and
presses the return key. The users input is stored in
the variable ANSWER. This time the script does
something different, depending on the users input.

But what if the user types in something other than Y
or N? To cope with this, we introduce another
keyword — elif.

#1/bin/bash

echo Did you enjoy the show? y/n
read ANSWER
if [SANSWER =y]
: then echo "Yes"
elif [SANSWER = n]
then echo "No"
else
I echo "I'm sorry I don't understand”
fi

In this script, the acceptable responses are caught
and acted upon. Any other response is dealt with by
the code after else. This would appear to solve the
problem, but if the return key is pressed without the
user entering a response, then nothing is assigned
to the variable ANSWER, which defaults to a null

Command Line Interface Intro: Part 7

value, and the script would see the testsas[=y]
and [= n], which produces the error message
unary operator expected. The way around this is to
use double quotes around the variable, which
causes the testtobe seenas[“” =y Jor[“”=n],
which are valid expressions that the shell can work
with. The “” in the test is an empty string (a string
with no characters), which is not the same as a null.

#1/bin/bash

echo Did you enjoy the show? y/n
read ANSWER
if ["SANSWER" =y]
. then echo "Yes"
elif ["SANSWER" = n]
then echo "No"
else
echo "I'm sorry I don't understand"

fi

You can have as many elif tests as you wish, and
the if statement can be nested as many times as you
can keep track of.

If [condition]

then
if [condition]
then
if [condition]
fi
fi
fi

And of course each if statement can have its own
elifs and elses. Here's a longer one with those line
numbers again.

#!/bin/bash

Get the current month & day

MONTH="date +%m"

DAY="date +%d’

if ["$MONTH" -le 3]

then #jan to mar

s echo "It's a long time until Christmas”
elif ["$MONTH" -gt 3 -a "$MONTH" -le 6]

10 then #apr to jun

T . echo "It's a while until Christmas"

12 elif ["$MONTH" -gt 6 -a "$MONTH" -le 9]

13 then #jul to sep

148 echo "soon we'll be thinking about Christmas"
15 elif ["$MONTH" -gt 2 -a "$MONTH" -1t 12]

16 then #oct to nov

Tl echo "Not long now until Christmas”

18 elif ["$MONTH" -eq 12]

19 +then #it's dec - check the day

CoNOuU bWl

200 if ["$DAY" -ge 1 -a "SDAY" -le 18]

21 | . then # up to the 18th

221 . x echo "Just a few days to Christmas”.
23 |. elif ["$DAY" -gt 18 -a "SDAY" -le 24]

24 | . then # 20th to 24th

25 | . . echo "Christmas is less than a week away".
26 | . elif ["$DAY" -eq 25]

27 . then # It's Christmas day

28 | . . echo "Happy Christmas"

29 |, elif ["$DAY" -ge 26 -a "$DAY" -le 31]

30 |. then # After Christmas

31 |. R echo "So That was Christmas"

2 || B else #Something went wrong with the date

33 |. . echo "Are you sure about that date?"
34 |. y exit 1

= |8 fi

36 else #Something went wrong with the date

TN echo "Are you sure about that date?"

38 . exit 1

39 | fi

Line 1 is our standard bash script header. Line 3 is a
comment and ignored.

Lines 4 & 5 use the date function with format
modifiers (%m and %d) to get the current month and
date into our variables

Line 6 Starts the first of 2 if-then constructs checking
if the month is less than or equal to 3.

Line 9 tests if the month is greater than 3 and less
than or equal to 6. That is, it is either 4, 5 or 6.

Line 19 We've discovered that it is December so we
start the second if-then construct to check the day.

Lines 23, 26 and 29 do more day testing.

Line 32 the default else statement. If we got here,
the the day was not in the range 1 — 31, so
something is wrong and we leave the script.

Line 36 We find ourselves back in the first if-then
construct at the else statement. If we got here, the
the month was not in the range 1 -12, so something
is wrong and we leave the script.

Line 39 Terminates the first if-then construct.

While the above script is useful to demonstrate the
use of nesting if — then statements and the use of
multiple elifs, it is not the only way or the most
efficient way to program this.

We could have used the case statement, which is
another conditional construct. This is the syntax for
the case statement.

Case {pattern} in
valuel)
commands
value2)
commands

Command Line Interface Intro: Part 7

*)
commands
M

esac

In this structure, the pattern is something, like the
contents of a variable, that you want to use to
control the actions of the script. If it has valuel, then
those commands up to the ;; are executed. Value2
causes a different set of commands to be executed
and so forth, until all values that you wish to test for
have been checked. The default at the end of the
statement catches any other value, and is used as a
fail-safe for unwanted or unexpected values. It can
also provide a way to exit the script (or code
segment). To test for multiple values, separate them
with a pipe symbol |.

In the next example, | have mixed a case statement
and the nested if-then statement from the previous
example, and added line numbers to the figure.

Because the values to be tested in line numbers 11 t
o 15 are integer numbers and the date function
returns a two character string such as “02,” the tests
in lines 8 to 12 would fail because of the leading “0”.
To overcome this, we echo the value through a pipe
to the tr (translate) command and use the option -d
(delete) with the argument “0,” which deletes any
zeroes in the string. unless the string is “10,” which
is an integer. This expression is evaluated in the
back ticks and assigned to the new variable
RAWMONTH.

1 #I/bin/bash
2 MONTH="date +%m”
3Eif [$MONTH != 10]

4 | then

5 | RAWMONTH="echo $MONTH | tr -d 0"

6 | else

7 | RAWMONTH=10

8 | fi

9 DAY="date +%d”

10 COcase $RAWMONTH in

11 | 1|2|3) eche "It's a long time until Christmas" ;;
12 | 4|5]|6) echo "It's a while until Christmas" ;;

13 | 7|8]9) eche "soon we'll be thinking about Christmas" ;;
14 | 10|11) eche "Not long now until Christmas" ;;
15012). if ["$DAY" -ge 1 -a "$DAY" -le 18]

16 | . then # up to the 18th

17 |. . echo "Just a few days to Christmas".
18 |. elif ["$DAY" -gt 18 -a "$DAY" -le 24]

1| B then # 20th to 24th

20 | . R echo "Christmas is less than a week away".
rhi | elif ["$DAY" -eq 25]

22 | . then # It's Christmas day

23 | . . echo "Happy Christmas"

24 | . elif ["$DAY" -ge 26 -a "SDAY" -le 31]

25 |. then # After Christmas

26 |. " echo "So That was Christmas"

2781 else

28 | . . echo "Are you sure about that date?"
2901 . exit 1

30

31 |. fi;;

32 L1*) #Something went wrong with the date

ciE || echo "Are you sure about that date?”

34 |. exit 1

35 | . i

36 | esac

We could have used the two character string as
returned from the data function in the case
statements, but using integers demonstrates the
need to be aware of the type of data we use in tests.

Each test in the case statement is on one line here
to make it more compact. If there are multiple
commands for a test, then they should be separated
by a semicolon or by a newline character (which
means on separate lines). | think that you'll agree
that the case statement is easier to read than the
many elifs in the if statement.

The if-then and case structures are examples of
conditional programming where the progress and
direction of the script is determined by the results of
certain tests. The shell has two conditional
operators, && and ||, known as “logical and” and
“logical or”. They work both in unary (one
argument) and binary (two arguments) mode.

In unary mode:
["$A" -gt 4] && echo "yes"
If the expression ["$A" -gt 4] evaluates to true the

the echo command is executed, if false the script
ignores the interruption and continues.

The || operator has the opposite effect in that the
expression has to evaluate to false for the command
to be executed.

Binary mode is used to test two arguments:
if["$SA" -1t 4] && ["$B" -gt 9] echo “yes”

The echo command is executed if and only if both
expressions are true.

if["$SA" -I1t4]]|["$B" -gt 9] echo “yes” The echo
command is executed if either or both expressions
are true.

This is similar, but not the same, as the test

operators -a and -0. When using the test operators,
both expressions are evaluated, and then the test is
performed. The && shell operator evaluates the first
expression, and if it is false, then there is no point in

looking at the second expression, as the ‘and’
condition cannot be met.

In a similar manner. if the first expression in an ‘or'
test using the || operator evaluates to true, then the
condition has already been met and the second
expression doesn't need to be evaluated. For this
reason, they are known as short circuit operators.

The scope of variables

As we have now started to use our own variables, it
is important that you understand the scope of
variables before we move on. The scope of a
variable is where its assigned value is valid.
Variables may be local or global. For example,
while on the command line, you are in a running
shell and you may create variables

jane@daisy MYVAR=a value
jane@daisy echo sMYVAR

a value

The scope of that variable is the currently running
shell process. When you exit the shell, the variable
ceases to exist, and if you start a new shell the
variable isn't available, as it is local to the shell
process where it was created. When you run a script
a new shell process is started and any variables that
you create are local to that script and not available
elsewhere.

Environment variables are global variables and are
available to all processes. In order to make your
variables available to other processes, they need to
be exported to the environment. All new processes
inherit the environment of their parent process.

When an exported variable is passed to a child
process, it retains the value assigned it in the parent
process. The child process may change the value of
the variable, but the value seen by the parent
remains unchanged.

jane@daisy >

export AGE=22
echo $AGE

su john
echo $AGE

AGE=19

echo $AGE

exit
echo SAGE

Jane set the variable AGE to 22, her age, and
exported it. When the su command was executed to
switch to user john, a new shell process was started
which could access the variable and its value, as set
by jane, which john subsequently changed to 19, his
age. Jane still sees the variable set as 22.

To remove a variable, use the command unset.

unset AGE
echo $AGE

Another command used with variables is readonly,
which has the effect of turning a variable into a
constant — a variable whose value, once set, cannot
vary. For example, readonly KB=1024. The
assigned value cannot be changed during the life of
the process and readonly variables cannot be

unset.

The env command is used to display the
environment variables that are currently set and to
control the environment that gets passed to
commands. The env command on its own will
display a list of all current environment variables. If
the env command is followed by one or more
variable assignments and used before a command,
the environment passed to the command will be
modified, but the current working environment will be
unaffected. With the -i option the current
environment will be ignored and only variables
passed to the command will be used.

jane@daisy > ~ $ env -i HOME=/tmp env
HOME=/tmp
jane@daisy > ~ $ env | grep “HOME

HOME=/home/ jane
jane@daisy > ~ $ []

The environment variable HOME, which normally
contains the full path name of the users home
directory, is temporarily changed to /tmp, and all
other environment variables discarded. This new
environment is then passed to the command env,
which starts in a new process and lists out all its
known environment variables. There is only one, as
the others were discarded.

(s6)

The env command is then immediately executed in
the current shell, and the output searched for lines
that begin with the pattern “HOME”. The changed
environment existed only for the process to which it
was passed.

Put the fun back into computing. Use Llnux BSD.

NSTROWATCH, COM

CLirnuxO®S

Macazine

W ol

Posted by exploder, March 21, 2010, running PCLmuxOS el7.

(57)

http://www.pclinuxos.com/wiki/index.php/Main_Page
http://pclosmag.com
http://www.distrowatch.com

Cornrnizirie] Lirl2 [ncarrze2 [nrroi Z:re o

by Peter Kelly (critter)

Shell Scripting Part 2

One of the reasons for writing a script is because we
need to perform the same operation on many
objects. To do this, we take the first object and
subject it to a sequence of commands which
examine, transform, copy, delete or otherwise act
upon the object. When we have finished with that
object, then we loop back to where we started, take
another object and repeat the exercise. We do this
until all the objects have been dealt with. We use a
flow control statement known as a loop to achieve
this.

Loops

By far the most commonly used loop construct in
scripts is the For loop, which | used to rename a
batch of files when discussing shell expansion. Now
| can explain how it works.

The syntax of a for loop is:
for {variable} in {set}

do
command 1

command N
done

variable can be any unused variable name and a
single character. i or x is often used.

set is the set of values that you want to assign to
variable at each iteration.

An example will explain this better.

ja - § for i in apples oranges grapes
> do

> echo $i are fruit

done

apples are fruit
oranges are fruit
grapes are fruit

You can type in these constructs at the command
line and the shell will keep prompting for more input
until the closing keyword of the construct is entered,
the word “done” in this example.

Each of the values in the set of values after the word
in are successively assigned to the variable i and
then all of the commands between do and done are
executed. There is only one command here, and the
$i is expanded to its current value when the loop
runs. While this example is of no practical use, other
than to demonstrate the use of the for loop, a more
common practical use is to loop through a list of file
names, performing tests or actions on each file.

The following code loops through the contents of a
directory and checks at each iteration if the current
object is a regular file. If so, it echoes the file name
to screen.

for i in ~/*

do

2 E =T Mg]

then

. echo "basename 5%i’
| A fi
_done

The if — then loop is needed to exclude objects, such
as directories. The basename command is used to
strip away any leading directory names that make up
the path to the file. Used in this way, it is possible to
run through large lists of objects and to then select
only the ones that you want to work with.

We can put almost anything in the list of objects to
loop through. When using numbers we can use a
range.

{5..10} will give the integer set (56 7 8 9 10), and we
can include a step value.

{5..20..3} gives the set of integers (5 8 11 14 17 20)

You may occasionally come across an older script
that uses the external command seq to handle
sequences of numbers like this:

for i in $(seq start end step)

rather than the bash notation {start..end..step}.
Both work, but the bash way is faster.

The bash variable $@ contains a list of the
arguments passed to the script on the command
line, and this can be put to good use to loop through
those arguments. However this is not necessary, as
simply omitting the list completely has the same
effect.

for i

do

. echo "s51"
~done

(s2)

& .ffor.sh Tirst second last

The next two looping constructs, while & until, are
very much alike.

while [test condition]
do

commands

done

and

until [test condition]
do

commands

done

The difference is that while loops as long as the test
is successful and until carries on until the test is
unsuccessful.

while ["$5" != "exit"]
do
echo "Type exit to quit, anthing else to continue"
. read s
done

This keeps looping as long as the statement “string s
does not have the value 'exit” is true whereas,

until ["$s" = "exit”]
do
: echo "Type exit to quit, anthing else to continue"
: read s

done

keeps looping as long as the statement “string s has
the value 'exit” is false.

You will find that while loops are used more than

until loops, and are often used to repeat an
operation a fixed number of times.

x=] .

while [%x -le 5]
do

echo %x
: x=%5(($x+1))
done

All of the bash looping constructs can be nested and
may contain other constructs.

Occasionally, you may find that during the execution
of a loop a condition arises that requires the loop be
exited, and execution of the rest of the script be
resumed. For those occasions, bash provides the
break command. In this example, we use another
method of indexing the loop, using a three-
parameter loop control expression.

for ({ 1=1; 1<=5; 1++ })
do

if ["$1" -eq 4]

then

break

fi

echo 31
done

echo "the loop has terminated "
echo "but the script continues"

The first expression, i=1, initializes the count, i<=5
sets the maximal count and i++ increases the count
by one for each iteration. The second expression
can be any valid test, and the third expression could
be i-- for a decreasing count or something like i+=3
to increase the count by three for each iteration. In
this script only, the values 1, 2 and 3 are printed to
the screen.

If you want only to stop the current iteration of the
loop before the end of the loop body, and then to
continue the next iteration of the loop, then the
command continue will do just that. This example
loops through the contents of a directory, discarding
all sub-directories.

for 1 in *

do
it [-d “s2"]
then
continue
fi
echo 41
done

Both of these commands take an optional numeric

argument that allows you to specify the number of

levels of enclosing loops to get out of, e.g. break 2,
to back out of two nested loops.

In the previous examples, all output to the screen
has been done using the echo command, which is
easy to use but rather limited. A more useful tool is
the bash builtin printf, which provides us with the
means to format the text.

(>3)

printf {format-string} {arguments}

The format-string part of the syntax is a mixture of
ordinary text to be printed literally, escape
sequences (such as \n to print a newline character)
and format specifications like %s to denote a
character string, or %d for a decimal integer. The
arguments are what you actually want to print.

The most useful escape sequences are:

\b backspace
\f formfeed
\n newline

\t tab

\v vertical tab

The format specifiers cater for character strings,
signed and unsigned decimal integers and floating
point numbers, with or without the exponent, as well
as octal and hexadecimal numbers. If you don't
know what some of these are, don't worry. Chances
are that you won't need them.

You can, of course, just supply text to the command
without any of the fancy escape sequences, or
format specifications. But if, at a command prompt,

you type:
printf “Hello World”

You will find that your command prompt is placed at
the end of the text. Unlike the echo command, the
printf command does not automatically supply a
newline character, and so the text insertion point
remains immediately after the printed text.

printf “Hello World\n” behaves as is normally
expected.

While this may at first seem a burden, it actually
enhances the usability of the function, allowing more
precise control over the output.

x=4((9x+1))
done

Lo w0 W W e
o
°©

printf "You are currently in %s\nwhich holds %d files\n" $PWD $x

~ % cd /bin
bin & ~/printf-demo.sh

currently in /bin
which holds 118 files

Line 3 initializes a variable, named x, to zero. This is
not really necessary but it is good practice to
precisely control variables.

The loop in lines 4 to 7 simply counts the number of
entries in the directory.

Finally line 9 does the business starting with some
literal text and then adding the first of the supplied
arguments, the environment variable $PWD, which
holds your current directory. The %s tells the
command to treat the argument as a character
string. Next is a newline character, followed by some
literal text. The newline ensures that the following
text is put on the next line down. Note that there is
no space between the newline and the text. Had
there been a space it would have been the first
character at the beginning of the line, indenting the
text. %d gets the next argument, $x, the file count,
and treats it as an integer number when printing it.

The format string is ended with another newline and
the whole of the format string is enclosed in double
guotes.

Treating the variable $x as an integer had no effect
in the previous example. | could have achieved the
same result if | had used $s and output it as a string.

The format specifiers are able to accept optional
modifying flags, which are inserted between the %
and the format specifier % flags width.precision.

width is the total number of spaces that the inserted
value will occupy. If the value is smaller than the
specified width then it is padded out from the left
(right justified)

precision is the number of digits or characters to
output. This varies depending on the format
specifier. For a string it is the maximum number of
characters. For integers it is the minimum number of
digits, default 1. For floating point numbers it is the
number of decimal places.

Flags can be one or more of the following:

space prefix positive numbers with a space and
negative ones with a minus sign

- left justify the inserted value

+ prefix numbers with a + or — sign

0 pad out numbers with zeroes instead of spaces
change the form of the output

If you need to use the last one, then you certainly

don't need me to tell you how to use it.
‘ 60 ’

A few examples to get you started:

PI:3;14159265
S=supercalifragilisticexpialidocious
printf "The Qalué of pi is %15s approximafely\n“ $PI
printf "The vélue of pi is %-15s5 approximately\n" $PI
printf "The Qalue of-pi is %15.6f abproximately\n“ $PI
printf "The value of pi.ié %-+15.3T approximately\n" $PI
printf “%.lSs...\ﬁ“ $S
>~ $./printf-demo2.sh
value of pi is 3.14159265 approximately
value of pi is 3.14159265 approximately

3.141593 approximately
approximately

value of pi is
value of pi is +3.142
supercalifragil...

If there are more arguments than format specifiers,
then the format string is reused, treating missing
arguments as zero or an empty string. For example,
if we modify the first script:

x=0

for 1 din *
do
x=$(($x+1))
done

printf "Directory is %s containing %d files\n" $PWD $x /bin

The first time around, all is fine, but there is still the
unused “/bin” argument, so the format string is
reused. However, it expects a string and an integer,
so it inserts a zero for the missing argument.

] aisy > ~ $ ~/printf-demo.sh
Directory is /home/jane containing 20 files

Directory is /bin containing 0 files

If the second line of output was true we would have
a major problem.

Functions

You can think of a function as a sub-script. It is a
block of code that is executed by calling its name,
along with any arguments that you want the function
to process, and the function must be defined before
it is called. For this reason, it is usual to define
functions at the beginning of the script, but they may
also be called from a separate file. When the same
code is used in several places in a script, then you
should consider using a function definition.

As the shell moves through the script, it recognizes
function definitions and stores the commands in
memory for later use. This makes the use of
functions in a script an extremely efficient way of
coding. A function can be called from within a
function.

This example script exits if the user is root, but a
user who has used the su command to get
temporary root privileges will not be detected. You
Ehegkréof ()
{
if [31 = “reot™]
then
echo "You are not permitted te runm this script as root"
return 1 #false
else
return @

fi
}

if !(checkroot $USER)
then
exit

fi

need to also check the environment variable
$USERNAME to catch those users.

The arguments passed to the function use the same
notation as arguments passed to the script on the
command line, known as positional parameters. The
command line arguments are temporarily stored in
memory during the execution of the function. Here
the first (and only) argument passed to the function
is SUSER, and is referenced by the function as $1.
The return value can be examined to determine the
outcome of the function. Zero is always considered
to be true, and any positive integer is taken to be
false. A function may be as simple or as complex as
you like, but it may not be empty.

When processing the arguments passed to a script
or a function, it is often useful to use the shift
command. What this does is to shift all the
arguments one or more places to the left, so that the
contents of $1 are replaced by the contents of $2, $3
goes into $2 and so on. We can use this to hand
down arguments, one at a time, to a loop, process it
and then get the next argument. If the argument $1
has its own qualifying argument, say a file name to
be used with that argument, then this will be found in
$2, Then after processing, this argument pair can
use an extra shift command or supply the shift
command with an optional count parameter shift 2 to
move the arguments the required places to the left.

(o2)

while [$# -ne 8 1]
do
if [41 = "filename"]
then
echo "file is §2"
shift 2
fi
echo %1
shift
done

$./shift-demo.sh two four filename testfile six eight

Useful as this command is for passing consecutive
arguments in $1 to a portion of code in a script or
function for processing, the need to scan a set of
options and arguments passed to a script has
resulted in the getopts command. This command
greatly simplifies the parsing of command lines. The
getopts command accepts a list of options valid in
the script or function, and recognizes that any
options followed by a colon require an additional
argument, which is placed in the variable $OPTARG,
each supplied option being stripped of a leading —
before being placed in a variable supplied to the
command getopts {options} {var} {arguments}.

If we were to write a script with the syntax
myscript -chh
-c [destination] copy a file to directory destination

-n print a count of files processed
-h print a help message and exit

which we might use to count or backup a set of files
provided in the arguments section of the command
line. To process the command, we could use code
similar to the following:

COUNTING=0

while getopts c:nh options
do
case $options in

1. DEST=$0OPTARG

n)COUNTING=1
h)echo “For usage please see the
accompanying documentation.”
exit 0
esac
done

This sets up the script functionality so that testing
the contents of the variable $SCOUNTING tells us if
we need to provide a count of the files, and if the -c
option was specified, then the variable $DEST, if it is
defined, tells us to perform the copy operation on the
files in the argument list and contains the path to
where we wish to copy the files.

The command getopt does not remove the options
from the command line, but maintains an index to
the next option in the variable $OPTIND. If we use
the shift command after the while loop, as

shift $((OPTIND - 1))

then all the options and their required options are
removed, leaving only the arguments (file list to be
processed) in the positional parameters $1, $2 ...

If you are using the getopt command to process
arguments to both the script and to functions within
that script, then you should be aware that the
variable OPTIND is not automatically reset and
should therefore be reset at the beginning of the
function, to ensure that the first argument retrieved
is, in fact, the first argument passed to the function.

Zenity

We now have a nice set of tools to start building our
scripts, and these few routines are sufficient to get
started on the coding of some fairly sophisticated
utilities. You just need to provide logic, intuition and
patience. What we have in our toolbox so far is fine
when we are writing scripts that only we shall be
using, but if we want to provide a solution for more
general use, then we need to make the scripts a little
more user friendly. Some of the potential users may
not be as command line savvy as you now are.

Fortunately, there are some excellent utilities in the
repositories to help here, and more than likely, one
or more will already be installed if you are using
PCLinuxOS. The command dialog can be used to
provide simple pop up boxes in the terminal:

dialog --msgbox 'Hello World!" 8 20

displays a simple message box 8 lines high by 20
characters wide, with a mouse click-able OK button

and the message “Hello World!”
‘62’

Command Line Interface Intro: Part 8

KDE provides kdialog to provide a similar capability
using dialog boxes directly on the KDE desktop and
returning results to the running script.

There are others, and they all have their virtues and
vices, but a very popular one that is extremely
simple to use is called Zenity. PCLinuxOS users can
see this in action if they run the excellent Repo
Speed Test utility by travisn000. Reading the text of
the script is highly recommended to better
understand how a lot of the topics we have recently
covered fit together to produce a useful utility, and
you'll learn a few more tricks as well. The script can
be found as /usr/bin/apt-sources-update.sh.

All of these dialog utilities are quite comprehensive,
but easy to implement and a good overview of the
capabilities can be had by typing the command
name followed by --help. | shall demonstrate some
of the ways that zenity can be used to spice up you
scripts and provide a professional look.

The syntax of the zenity command is simple
zenity options

The options determine the type of dialog to display,
along with any options relative to that particular
dialog. The types of dialog available and the option
to call them include:

--calendar calendar dialog

--entry text entry dialog

--error error dialog
--file-selection file selection dialog
--info info dialog

--list list dialog

w Iux0S

T T ™" R4dica ﬂ Simple

--notification notification icon
--progress progress indication dialog
--question question dialog

--text-info text information dialog
--warning warning dialog

--scale sliding scale dialog

Calendar

The calendar dialog displays a nice monthly
calendar in a window, from which you can select a
date. You may specify some text and a title to be
displayed on the dialog, as well as the the day,
month and year to be shown when the dialog is
shown. The width and height of the dialog may also
be specified. The command can get to be quite long,
so | have used the line continuation character \ to
save space, but it is all treated as a single line by the
shell.

zenity --calendar --title="Janes Calendar" \
--text="pick a date" \

--day=15\

--month=6 \

--year=2020\

--width=300

‘Bw Janes Calendar =~ =~

*

pick a date
Calendar:

< June > <2020 >

Sun Mon Tue Wed Thu

7 8 9 10 11 12 13
14 mebm 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

@cancel | | vOK |

The selected date is returned by default in the
format 06/15/2020, but there is another option that
allows you to completely control what you get.

--date-option=STRING

where STRING conforms to the specification of the
strftime function. There is far too much to cover here
(Google is your friend) but briefly:

"%A %d/%m/%Y" produces Monday 15/06/2020 and

"%a %d %B %Y" changes it to Mon 15 June 2020.
Get the idea?

The returned date can be simply captured in a
variable by enclosing the entire command in
backticks:

MYDATE="zenity --calendar’

Clicking the cancel button returns an empty string.

Text Entry

The text entry dialog provides a simple way to read
data into a script. The --entry-text option provides
the default text when the dialog is shown.

zenity --entry --text="Please enter your name" --
entry-text="name"

Command Line Interface Intro: Part 8

= & Ad... @ & LX)

Please enter your name

e)
[@gancel” W 0K |

A rather useful feature is the --hide-text option. This
is useful for entering passwords.

w @ Ad... & & X

Please enter your name

lsononses |
[BQance!” ¥ OK |

Beware though that this returns an unencrypted
plain text string.

Error, Warning, Question and Information

These four dialog boxes are very simple text boxes
and are shown below with their default text and
icons.

Of course the text, width and height can be changed
with the corresponding --text. --width & --height
options to suit the application.

[4

Error

Q An error has occurred.

2TX

Warning
g Are you sure you want to proceed?

Information o

@ All updates are complete.
{8

Question e
Are you sure you want to proceed?
l Cancel] [OK]

Eile Selection

The file selection dialog sets up file reading and
writing through a nice interface. It doesn't actually do
the read or write operation, as that must be done in
the script, but it does make things easier for both the
user and the script writer.

The dialog defaults to read mode and returns the
selected file name and its full path. If the --multiple
option is specified, then multiple files may be
selected and are returned separated by a vertical
bar character |. This separator character can be
changed with the --
separator=SEPARATOR_CHARACTER option. The
--directory option restricts the selection to directories
only. The --save option adds a text entry bog which
prompts for the file name, which may be preset with
the --filename=FILENAME option. This allows you to
select the name and directory to save the file
through a graphical method, and this file name and
path are returned by the command. If the --confirm-
overwrite option is used then a warning dialog
prompt will pop up if the file already exists.

zenity --file-selection --save --confirm-overwrite
brings up this dialog:

Name: newfile

Save in folder: |Fjane

<>

b Browse for other folders

Command Line Interface Intro: Part 8

And typing in the name of an existing file warns the
user with this.

@ A file named "newfile" already
exists. Do you want to replace it?

The file already exists in "jane". Replacing
it will overwrite its contents.

[Beplace H Cancel l

Clicking on "Browse for other folders" or opening the
dialog in the default read mode by not issuing the --
save option brings up a fully search-able file dialog
that most GUI users would be comfortable with.

zenity e
Places Name v | Size Modified |
@ Recently Used 21/01/10
jane boot 29/03/10
I3 Desktop cli 12/11/09
= File System dev 29/03/10

etc 29/03/10
[F2 home 06/02/10
B initrd 12/11/09
lib 21/01/10
lost +found 12/11/09
media 29/03/10
mnt 19/03/10
opt 25/02/10
roc 29/03/10
Add ‘Bemove| P

Notification

The --notification option puts a tiny icon in the
system tray which will display a tooltip when the
mouse hovers over it. The text of the tooltip you can
specify with the --text=TEXT option.

all o W A

This command takes one more option, --listen, which
listens for data on stdin. Using this option is a little
more difficult. stdin usually uses file descriptor 0, but
we can send data through another file descriptor,
using echo. The listen option expects one of three
option-commands - tooltip, icon and visible -
allowing us to dynamically control the displayed text,
the icon in the system tray and the visibility of the
icon, which is a useful way of getting feedback from
the script to the user.

zenity --notification --text="PCLinuxOS"

will place the triangular warning icon in the system
tray, as in the graphic above, with a tooltip
announcing "PCLinuxOS."

When we use the --listen option, we can write

exec 3> >(zenity --notification --
text="PCLinuxOS" --listen)

which sends all data using file descriptor 3 to the
zenity command. File descriptor 3 has been used,
as 0, 1 & 2 are already used by stdin, stdout and
stderr, but I could have used, for example, 7 or even
27, with the same effect.

To change the icon to the “info-icon,” we can echo
that information through file descriptor 3:

echo "icon: info" >&3
which changes the icon like this:

allo oM T

To change the tooltip we would issue

echo "tooltip: Radically Simple" >&3

and we can keep on sending new information to the
command in this way.

To end the notification command we simply need to
close the file descriptor:

exec 3>&-

Text Information

The text information dialog allows you to display text
from a file to the user. The text can also be piped to
the command from another command.

zenity --text-info --filename=FILENAME

Command Line Interface Intro: Part 8

X

Text View

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991 [

Copyright (C) 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Everyone is permitted to copy and distribute verbatim
copies

of this license document, but changing it is not
allowed.

[This is the first released version of the library GPL. It
is

numbered 2 because it goes with version 2 of the
ordinary GPL.]

Preamble

The licenses for most software are designed to take
away your

Close

You may make the displayed text editable with the
--editable option. The edited text is returned by the
command as text which must be captured, as it is
not written to the source file.

Scale

The scale dialog displays a sliding scale for which
you can specify the maximum, minimum and starting
value, the step by which it increases and whether or
not to display the current value. With the --print-
partial option, you can echo the current value back
to the calling program as to move the slider. Clicking
the OK button closes the dialog and returns the

current value. The slider may be moved by the
keyboard arrow keys or by the mouse, although in
the latter case the step value is ignored.

zenity --scale --min-value=0 --max-value=100 --
value=76 --text="Set The Value"

Adjust the scale valud =21 X

Set the value
{ [] 176

List

The list dialog has lots of options. You can set up a
number of named columns, and supply data to be
displayed under them, in rows. The user can select
one or more rows and click the OK button to return
the selected data to the script. By using the --
checklist option, the first column of each row will
contain a check box, which the user can click to
select the row. All checked boxes return data to the
script. The first item of data sent to each row should
the be either TRUE or FALSE to set the initial state
of the box. The --radiolist option works in the same
way and provides radio buttons.

By default, the command returns data from the first
data column, but this can be changed with the --
print-column option, since a value here of ALL
returns the entire row. Returned data is separated by

the vertical bar character | but this can be changed
with the --separator option. The --editable option
enables the user to edit the data before returning it
to the script with a click of the OK button.

| think an example is in order.

zenity --list --column="Select" \
--column="Name" --column="e-mail" \
FALSE "John" "john.doe@home" \
TRUE "Dan" "dan.dare@space.com” \
FALSE "Bill" "billybob@microsoft.com" \
FALSE "Charles" "dickens@pickwick.uk" \
--print-column=ALL\

--separator=""\

--checklist \

--height=240\

--width=350

Select items from the list (X

Select items from the list below.

Select Name e-mail

O John john.doe@home
Dan dan.dare@space.com
Ll Bill billybob@microsoft.cor
[1 Charles dickens@pickwick.uk
<
[Cancel H oK l

Progress

You can see a very good example of a progress
dialog when you you run the Synaptic package
manager. At first glance the available options don't
seem to offer a very wide choice but this little dialog
can be quite impressive.

These are the options:

--text=STRING Set the dialog text
--percentage=INT Set initial percentage
--auto-close Close dialog when 100% has been
reached

--auto-kill Kill parent process if cancel button is
pressed

--pulsate Pulsate progress bar

And of course, all of the general options like width,
height are also available. The data to the command
is probably most easily piped in through a previous
command, but you may also wish to feed it in
through a file descriptor, as in the previous
notification example.

#!/bin/sh
{
echo "20" ; sleep 1
echo "# 7777..." ; sleep 1
echo "50" ; sleep 1
echo "# Not ready yet ZZZZ..." ; sleep 1
echo "75" ; sleep 1
echo "# just a bit longer ZZZZ..." ; sleep 1
echo "75" ; sleep 1
echo "# 0K! I'm ready now" ; sleep 1
echo "99" ; sleep 1

»

zenity --progress \
--title="Do not disturb!" \
--text="Taking a nap..." \
--percentage=0 \
--auto-close \
--width=250

Iux0S

T T ™" R4dica ﬂ Simple

Do not disturb! (B

just a bit longer ZZZ7...

This echoes text into the command, updating the
progress bar as new data is sent in. Text prefixed
with a # updates the --title option while the numbers
update the --progress option. The sleep n command
does nothing for n seconds so that you can see
whats going on, but normally you would actually do
something useful here. Another option is --pulsate,
which causes the progress bar to slide back and
forth for the duration of the command or an end of
file character is received. The --auto-close option is
used to automatically close the dialog when
progress reaches 100% without requiring any user
interaction.

When you use redirection to feed information to a
dialog with a command like

Is Ibin | (zenity —text-info)

then that information is absorbed by the zenity
command. To overcome this, we can use the tee
command. tee duplicates the data, sending it to
multiple pipes.

Is Ibin | tee >(zenity —text-info) >bin.txt

Command Line Interface Intro: Part 8

This will put the output of the Is command into the

dialog, and also send it to the file bin.txt.

PCLinuxOS Enlightenment e17 ISO

Cornnzirie] Lina [ncarrz1e2 Jricros Z:rre 2

by Peter Kelly (critter)

Almost everything that you do on the command line
involves moving, changing, comparing or deleting
text data. This data may reside in a file on a disk
drive or be generated as the output from a previous
command in the form of a data stream.

When the UNIX operating system was first
developed at Bell Laboratories in the early 1970's,
Ken Thompson, who is generally regarded as the
chief architect of the project, was keen to implement
a system of inter-connecting streams of data as an
alternative to using a series of discrete processes to
achieve the required output. Today we refer to this
system as 'pipes' and 'redirection’.

The software tools available in those dark days were
rather primitive, but have mostly survived and
evolved into what we use today. The program ed has
survived mostly unchanged in its usage since those
times (which probably accounts for its lack of use
today). ed is a line editor, unlike text editors such as
vi(m). A line editor reads in a file and works on one
line at a time, not on the whole file. You make
changes to the line and then move to another line.

Just as the program was simple, and so were the
commands. You used p to print the line to the
terminal so that you can actually see what you are
editing (this is not done automatically), d to delete
the line, s to substitute some text for some other
text, but only in that line. To edit a large text file
interactively, by hand, this is far too restrictive. So
the text editors that we more commonly use today
were developed.

With the introduction of pipes for streams of data
through this method of editing line by line, non-
interactively is ideal and so a new tool was
introduced known as a stream editor. This reads in
data and applies a series of commands to the data
as it flows through. These commands, deletions,
substitutions etc, could be supplied on the command
line, or read in from a file or script. If the input data is
from a file, then that file is not changed. Only the
data in the output stream is affected, and this can be
saved as a new file or further processed along the
‘pipeline’.

As a model for this new tool, the ed editor was
chosen and named sed - stream editor, which you
may have heard of.

SED

The sed utility retains a lot of the simplicity of
commands it inherited from ed, but it adds a lot more
functionality. Its command line or script can be a
bewildering gibberish text when you first encounter
it.

sed -n -e 's/IMI MegaBytesl;s/-.\{12\}\(.\..
MegaBytes\) \([0-9]\{4\}\)-\([0-9][0-9]\)-\([0-9][0-9]\)
w2 ACS)NN3BWN2 11 \5/p' sed-demo

If we break down this gibberish into manageable
phrases, then it becomes more comprehensible. It
really does, trust me.

Now before you throw your hands in the air and say
"This is not for me!" let me say that it is very unlikely
that you would ever need to construct such a
complicated command.

Here's something a lot simpler and is actually useful.
Many Linux users also use MS Windows, but if you
try to read a Linux created text file in Windows, then
you find that the line breaks don't work and extend to
the full width allowed by the editor, probably
notepad. This is because Linux terminates its lines
with a newline character \n, while DOS and
Windows need a newline and a carriage return pair
\n\r (just like the old typewriters, where you move
the paper up a line and push the carriage back to
the beginning of the line). A newline on its own is not
recognized as a line termination. Sed makes light
work of this.

sed 's/$/\rl' linux-file > dos-file makes Linux files
DOS-readable.

sed 's/\r/I' Idos-file > linux-file converts them back,
although this usually isn't necessary as Linux will
disregard the extra carriage returns.

It would be a trivial matter to put these two files in a
script and create a couple of aliases to them,
perhaps 12d & d2l.

The syntax of sed is very simple:

sed {options} {commands} {file}

options

The most useful options available for GNU sed,

which is the version that Linux users will most likely
find that they have installed, are:

()

-e is required when you are specifying
commands on the command line and tells
the application that what follows should be
treated as a command to be applied to the
current line. The option can be repeated on
the command line to apply multiple
commands to the input data.

-n silent mode, don't automatically print the
lines to stdout.

-f script add the contents of the named script to the
commands to be executed

-r use the extended set of regular
expressions (like egrep)

--posix disable gnu extensions. This makes scripts
portable to systems that have the standard
unix-like version of sed

--help covers all the options for the version that
you are using.
commands

These define what you do to the data as the stream
passes through, and | will describe the use of the
most important ones in the body of this text.

file

This is the input data stream, and if the file name is
supplied on the command line, it is treated as stdin.
That is, sed command file and sed command <
file mean the same thing. The input may also be

piped in to the command, e.g. cat file | sed
command or Is -l | sed command.

To get started, find or create a file to play around
with. | have used a short listing of my /boot directory,
in a file named sed-demo, Is -AlLGgh /boot >sed-
demo, which looks like this:

total 31M

-rw-rw-r-- 1 440 2010-04-02 10:59
boot .backup.sda

-rw-r--r-- 1 111K 2010-04-03 15:11
config

-rw-r--r-- 1 108K 2010-03-16 15:11
config-2.6.32.10-pclos2.pae

-rw-r--r-- 1 111K 2010-04-03 15:11
config-2.6.33.2-pclosl.pae

-rwxr-xr-x 1 579K 2010-04-02 10:59
gfxmenu*

drwxr-xr-x 2 4.0K 2010-04-05 04:11
grub/

“rW------- 1 6.4M 2010-04-02 11:35
initrd-2.6.32.10-pclos2.pae.img

“rW-=-====-- 1 6.4M 2010-04-04 08:56
initrd-2.6.33.2-pclosl.pae.img

-rW------- 1 6.4M 2010-04-04 08:56
initrd.img

-rw-r--r-- 1 1.5K 2010-04-10 14:04

kernel.h

-rw-r--r-- 1 1.5K 2010-04-02 11:59
kernel.h-2.6.32.10-pclos2.pae

-rw-r--r-- 1 1.5K 2010-04-10 14:04
kernel.h-2.6.33.2-pclosl.pae

-rw-r--r-- 1 249K 2006-11-05 23:23
message-graphic

-rw-r--r-- 1 1.4M 2010-04-03 15:11
System.map

-rw-r--r-- 1 1.4M 2010-03-16 15:11
System.map-2.6.32.10-pclos2.pae

-rw-r--r-- 1 1.4M 2010-04-03 15:11
System.map-2.6.33.2-pclosl.pae

-rw-rw-r-- 1 256 2010-04-02 10:59 uk-
latinl.klt

-rw-r--r-- 1 2.0M 2010-04-03 15:11
vmlinuz

-rw-r--r-- 1 2.0M 2010-03-16 15:11
vmlinuz-2.6.32.10-pclos2.pae

-rw-r--r-- 1 2.0M 2010-04-03 15:11
vmlinuz-2.6.33.2-pclosl.pae

This file contains a mixture of lines of varying length,
and fields of differing construction. To select only
data that meets certain criteria, and to re-format
parts of it to more accurately meet my requirements,
would be very difficult without a utility like sed.

(=)

The changes | want to make to this set of data are:

. Remove the total count

. Keep only regular files, no links,directories etc.

. Remove the permissions fields

. Remove the link counts

. Keep only lines that contain files of 1MB or
larger

. Change 'M' to 'MegaBytes'

. Change the date format from year-month-day to
day/month/year

. Remove the time field

. Output the date size and file name - in that
order.

b~ wWNE

~N O

© 0

Now that looks like a lot of work, but thanks to the
flexibility of sed, | can do it in one command.

To get rid of the line 'total 31M' and leave only the

lines with file details, | could issue the following
command:

sed -e '[totalld' sed-demo

This is the beginning of the output from this
command.

Y 5 sed -e '/total/d' sed-demo
~-- 1 440 2010-04-02 10:59 boot.backup.sda
- 1 111K 2010-04-63 15:11 config

- 1 108K 2010-03-16 15:11 config-2.6.32.10-pclos2.pae
- 1 111K 2010-04-03 15:11 config-2.6.33.2-pclosl.pae

The line at the start of the listing that contained the
expression total has disappeared from the output.

So what did | do here? | issued the sed command
with the -e option, which told sed to treat the next

command line argument, ‘/total/d’, as a command to
apply to the input file sed-demo.

What sed did was to read in the entire sed-demo file
line by line into an area of memory known as pattern
space and examined each line to see if it could
match the regular expression total, which is
surrounded by a pair of slashes. Whenever a match
was found, sed applied the d command, which
deletes the current line from pattern space. This
results in no output from sed from the analysis of
that line. Lines that do not contain a pattern match
are unaffected and flow through the command to
stdout, which in this case is the terminal, as output
has not been redirected elsewhere.

While that simple example of sed usage is not
difficult to follow, the key phrase here is 'regular
expression,' and a good understanding of regular
expressions is required to make effective use of this
command.

We covered the basics of regular expressions when
we discussed the grep command, so perhaps a
refresher is in order.

Aregular expression is a sequence of literal
characters and meta-characters. Literal characters
are treated exactly as they are written and are case
sensitive. Meta-characters have a special meaning
in regular expressions, and must be expanded to
produce the search pattern from the regular
expression. These are the basic meta-characters:

The dot character matches any single character

\« \»

\{n\}

The asterisk matches zero or more
occurrences of the preceding character.
This is not the same behavior as the shell
wild-card character.

The caret is a tricky one, it has two
meanings. Outside of square brackets it
means match the pattern only when it
occurs at the beginning of the line, this is
known as an anchor mark. As the first
character inside a pair of brackets it
negates the match i.e. match anything
except what follows.

Another anchor mark this time meaning to
only match the pattern at the end of a line.

More anchor marks. They match a pattern at
the beginning \« or the end \» of a word.

The backslash is known as the escape or
quoting character and is used to remove

the special meaning of the character that
immediately follows it.

Brackets are used to hold groups, ranges
and classes of characters. Here a group
can be an individual character.

Match n occurrences of the preceding
character or regular expression. Note that n
may be a single number \{2\}, a range
\{2,4\} or a minimum number \{2,\} meaning
at least two occurrences.

(70)

\(Y) Any matched text between \(and\) is
stored in a special temporary buffer. Up to
nine such sequences can be saved and
then later inserted using the commands \1 to
\9.

In the previous example, the regular expression we
used, total, contained only literal characters. But
more usually, you will build up a regular expression
from literals, meta-characters and character classes
such as [:digit::] or [:space:]. The use of meta
characters in regular expressions enables you to
very quickly match quite complicated or unknown
patterns. Some examples:

sed -e '/M#'d' .bashrc would strip out any comments
from your .bashrc file as comments begin with a #.

sed -e 'I"$/d' .bashrc would remove any blank lines
by matching the beginning and end of the line with
nothing in between.

It is quite safe to try these out since the source file is
not altered. Only the output to the terminal is
changed.

In my test file, | have one directory, /grub, and this is
denoted by the letter d at the beginning of the line.
To remove the line, we can use sed's delete
command with a regular expression that matches
only that line.

sed -e '/"dld' sed-demo matches all lines
beginning, that's the #, with d, and applies the delete
command. The command is single quoted to prevent
shell expansion of meta characters. Recall that
single quotes are known as strong quotes, and

protect the contents from the effects of shell
expansion, which wouldn't have had any effect here,
but it is a good habit to get into.

To keep directories and remove all other lines, we
need to reverse the effect of the command, which
we can do with:

sed -n -e '/"dIp' sed-demo

The -n turns off automatic echoing of pattern space
to the terminal, and the p command, on finding a
pattern match, prints the current contents of pattern
space to stdout which, as the output has not been
re-directed, is the terminal.

Alternatively we could look for lines that begin with a
hyphen, and that would also exclude anything that
wasn't a regular file.

sed -n -e '/N-Ip' sed-demo

image

The directory line has been removed but so has the
total line as that also did not begin with a hyphen. In
this case it helps, but we have to be extremely
careful about what we want to include or exclude.
Similarly, we can remove all lines that do not contain
an uppercase M followed by a space to keep only
files of one MB or larger. Without the space, the total
line would be included, as that also contains an
uppercase M but no trailing space.

sed -n -e 'IM Ip' sed-demo

$ sed -n -e '/*-/p' sed-demo
2010-04- :59 boot.backup.sda
2010-04- :11 config
2010-03- :11 config-2.6.32.10-pclos2.pae

2010-04- :11 config-2.6.33.2-pclosl.pae

2010-04- :59 gfxmenu*

2010-04- :35 initrd-2.6.32.10-pclos2.pae.img
M 2010-04-04 ;56 initrd-2.6.33.2-pclosl.pae.img

In the first example, | matched the pattern total to
remove the first line, but I could more easily have
specified an address.

sed -e '1d' sed-demo the 1 is the line number that |
want to remove. Addresses can be ranges, so sed -e
'8,20d" will remove lines 8 to 20 from the output.

5 sed -n -e '/M /p' sed-demo

L4M 20 04-02 :35 initrd-2.6.32.10-pclos2.pae.img
aM 4 :56 initrd-2.6.33.2-pclosl.pae.img

4aM -04-04 156 initrd.img

aM -04- :11 System.map

aM -03- :11 System.map-2.6.32.10-pclos2.pae
4M -04- :11 System.map-2.6.33.2-pclosl.pae

OM 2010-04- :11 vmlinuz

.M -03- :11 vmlinuz-2.6.32.10-pclos2.pae

0M 2010-04- :11 vmlinuz-2.6.33.2-pclosl. pae

16
16.
- 16.
11.
L 1
- 11.
- 12,
- 12
- 12,

Notice that the total line and the directory line are
still in the output, as the original data has not been
altered.

In this case, | knew the address was 1, but usually
you have to search for it. You do this by specifying a
regular expression surrounded by slashes. The
address of the line to delete in the first example was
given by matching the regular expression /total/

Substitution

Now that we have a means of keeping only those
lines that we want in our final data set, we need to
change some of that data.

(1)

Probably the most used command for sed is s, to
substitute one regular expression for another. The
format for this is:

sed -e 'slold/new/’ {file}
So that the command
sed -e 's/IM/ MegaBytes/' sed-demo

would change all the uppercase Ms to ' MegaBytes'
(note the preceding space) in my test file. Note that
sed by default only matches the first occurrence of

the pattern on each line. If you need to match every
occurrence, which is often what you want, then you
have to add the g -global command:

sed -n -e 's/r/RIp' sed-demo would only replace the
first r with R.

sed -n -e 's/rIRIgp' sed-demo replaces every
occurrence.

Combining two commands we can make a
substitution and output only the lines that we want to
keep.

sed -n -e 'sIM/ MegaBytes/' -e 'IMegalp' sed-demo

-~ $ séd -n -e 's/M/ MegaBytes/' -e '/Mega/p' sed-demo

4 MegaBytes 2010-04- :35 initrd-2.6.32.10-pclos2.pae.img
.4 MegaBytes 2010-04-0. :56 initrd-2.6.33.2-pclosl.pae.img
4 MegaBytes 2010-04-04 156 initrd.img

4 MegaBytes 2010-04- 111 System.map

.4 MegaBytes 2010-03- :11 System.map-2.6.32.10-pclos2.pae

4 MegaBytes 2010 111 System.map-2.6.33.2-pclosl.pae
MegaBytes 2010-04- :11 vmlinuz

MegaBytes 2010-03-16 111 vmlinuz-2.6.32.10-pclos2.pae
MegaBytes 2010 ;11 vmlinuz-2.6.33.2-pclosl.pae

The substitute command can also be used to good
effect to delete a part of the line. To remove the time
field, we could match two characters followed by a
colon followed by two characters and replace it with
something like this:

To remove the permissions, the link count and
trailing space at the start of the line, we could match
a hyphen followed by exactly 12 characters by using
the dot, \{ & \} metacharacters.

sed -e 's/-\{12\}/I' sed-demo

The dot matches any character, and the number
inside the escaped braces tells the command how
many matches to make. In other words, match
exactly 12 characters.

One thing to be aware of when using regular
expressions with meta characters is that they are
greedy. They will always try to match the longest
possible string.

If you try to remove the permissions with a command
like this:

sed -n -e 's/-.*-/Ip' sed-demo

looking for a hyphen followed by some characters
followed by a hyphen, then you might be
disappointed to see that it matched strings like this
-rw-r--r-- 1 111K 2010-04-03 15:11 config-2.6.33.2-
and output only pclosl.pae

Putting all this together makes for a pretty long
command line, so | have used the shell line
continuation character, the backslash, to make it
more legible. But remember that it is all one line, as
far as the shell is concerned.

sy > ~ % sed -n -e 's/- A{12\}//' \
's/M/ MegaBytes/' \
: A
> -e '/Mega/p' \
> sed-demo
total 31 MegaBytes
MegaBytes 2010-

initrd-2.6.32.10-pclos2.pae.img
initrd-2.6.33.2-pclosl.pae.img
initrd.img

System.map
System.map-2.6.32.10-pclos2.pae
System.map-2.6.33.2-pclosl.pae
vmlinuz
vmlinuz-2.6.32.10-pclos2.pae
vmlinuz-2.6.33.2-pclosl.pae

MegaBytes 2010-
MegaBytes 2010-
MegaBytes 2010-
MegaBytes 2010-
MegaBytes 2010-
MegaBytes 2010-
MegaBytes 2010-
MegaBytes 2010-

MNNNE =GOS
coobLALEEE

The skill in using sed is recognizing what you want
to match, and the building of a regular expression
that matches that part of the line, and only that part.
This comes with practice and an understanding of
regular expressions. Matching the file name is quite
tricky, as there seems to be no 'standard format' that
could be easily matched. So the easiest way out is
to match everything else.

sed -e 's/-\{34\}/I' sed-demo

Here's the start of the output:

;jan) > ~ 5 sed -e 's/-.\{34\}//' sed-demo
| total 31M
|boot.backup.sda

{config
config-2.6.32.10-pclos2.pae
config-2.6.33.2-pclosl.pae

lgfxmenu*

(72)

No, | didn't count all 34 characters. | took a guess,
tried it and adjusted it. This trial and error method is
quite common when building regular expressions,
although not everyone admits it.

If you noticed that the total line is in the output, it is
because it doesn't begin with a hyphen and we
hadn't already removed it. The order of operation of

your commands can have a great effect on the
resultant output.

sed -e 's/[0-9]\{4\}-[0-9][0-9]-[0-9][0-9]/I' sed-demo
matches the date part of the line and removes it.
Here's how it works.

The first slash starts the search expression.

[0-9]\{4\} matches exactly 4 digits

- matches a literal hyphen

[0-9][0-9] matches 2 digits

- matches a literal hyphen

[0-9][0-9] matches 2 digits

The second slash ends the search expression.
When a match is found, it is replaced by whatever is
between the second and third slash. In this case,

nothing.

For example, in the second line of the test file, 2010-
04-02 is a match and will be removed.

Now we have most of the methods needed to
complete the task, but the command line is getting
rather clumsy.

We could write a script and put all of the commands
in there, but there is another way using the meta
characters \(and \).

Any thing that matches the regular expression that
appears between this pair is is stored and can be
recalled for later inclusion. A match from the first pair
can be recalled with \1, the second pair with \2 and
so on up to \9.

Here's the final command which turns off automatic

line echoing, matches the entire line storing parts of
it and then outputs some of those stored parts in the
required order.

sed -n -e 's/IM/ MegaBytes/' -e 's/-\{12\}\(.\..
MegaBytes\) \([0-9]1\{4\}\)-\([0-9][0-91V)-\([0-9][0-9]\)
..... \(-*$\)\A\\3\/\2 \1 \5/p' sed-demo

Another way of writing this command without
repeating the -e option is to separate the commands
with a semicolon

sed -n -e 's/M/ MegaBytes/';s/-\{12\}\(.\..
MegaBytes)) \([0-9]\{4\}\)-\([0-9][0-9]\)-\([0-9][0-9]\)
w2 ACS)NN3BWN2 11 \5/p' sed-demo

Personally, | find this harder to follow, but the choice
is yours.

This is easier to follow if | break it down. Just to
remind you, here's a typical line from the input file.

3 i > ~ § sed -n -e 's/M/ MegaBytes/' -e A{12\
N Meanytes\) N([O-9IN{4N\IN) -\ ([0-9][0-9]\) - \([G 9][
6-9]1\) : \(SN} ANAN/NIN/N2 AL \5/p' sed-demo
02/04/2010 MegaBytes initrd-2.6.32.10-pclos2.pae.img
04/04/2010 MegaBytes initrd-2.6.33.2-pclosl.pae.img
04/04/2010 MegaBytes initrd.img

03/04/2010 MegaBytes System.map

16/03/2010 MegaBytes System.map-2.6.32.10-pclos2.pae
MegaBytes System.map-2.6.33.2-pclosl.pae
MegaBytes vmlinuz

MegaBytes vmlinuz-2.6.32.18-pclos2.pae
MegaBytes vmlinuz-2.6.33.2-pclosl.pae

03/04/2010
03/04/2010
16/03/2010
03/04/2010

NNNERE OO O
coehdLLLDS

-rw-rw-r-- 1 440 2010-04-02 10:59
boot.backup.sda

sed -n -e 's/IM/ MegaBytes/'

The first expression is a substitution replacing 'M'
with a space, followed by the word MegaBytes

-e 'sl-\{12\}

The second expression is also a substitution,
replacing a hyphen, followed by exactly 12
characters.

\(.\.. MegaBytes\)

Followed by a character, a dot (which has to be
escaped to retain its literal meaning), another
character, a space, and the word 'MegaBytes'. All of
the matching data is stored in \1. This is the size.

\([0-9]M4\])

followed by exactly four digits, which are stored in \2.
This is the Year.

(7)

Command Line Interface Intro: Part 9

-\([0-9][0-9]Y)

followed by two digits, is stored in \3, and represents
the month.

-\([0-9][0-9]Y)

followed by two digits, is stored in \4, and represents
the day.

followed by a space, two characters, a colon, two
more characters and a space. This is the time, but
as we don't use it, it isn't stored.

\(*$\)/
followed by any number of characters that end the
line, hence the dollar sign. This is the file name, and

is stored in \5. This ends the search section of the
substitution.

This is what we are going to replace the data we just
matched with:

\4 First \4 - the day

\/ followed by a forward slash that has to be
escaped, or else we would terminate the substitution
command

\3 followed by \3 - the month

\/ followed by a slash

\2 followed by \2 the year
\1 followed by a space and \1 - the size

\5/p' and finally a space and \5 the file name, the
substitution command terminating slash and the p
command to print out the substituted data.

sed-demo This is the name of the file that we want
sed to process.

Easy peasy :)

Of course in real life, that is far too long a command
to enter on the command line. Normally, such a
complex operation would be written to a file and
referenced by sed with the -f option.

With our commands in a file, we can easily test and
adjust until we get the required result. We can also
group multiple commands that you want to apply to
the same address, or to each line, by placing them
within braces. In the previous example we changed
M to Megabytes, but more realistically, we might
want to change M to MB and K to KB. If we create a
file named sed-file (call it what you like) with the
following text:

{
sIKIKB/
s/IM/IMB/
p

}

Then execute:

sed -n -f mysed-file sed-demo

As we haven't specified an address before the
opening brace, all lines will be processed by
applying both substitutions to each line, and then
printing them to the terminal.

Lets try another test file. Here's a very simple html
file that lends itself nicely to reconfiguration by sed.
I've named it 2010.html. Don't worry if you don't
know any html code. You only need to know that the
things in the «» affect the look and format of the web
page. «p» starts a paragraph and «/p» ends it.
These are known as tags.

«body»
<h1»PCLinux0S 2010
Release</h1>
<p>Texstar recently anounced
the release of the 2010 version of
this popular distribution.</p>
<h2>Now available in the
following versions</h2>
<p>KDE4 The base
distribution</1i></p>
<p>Minime Minimal
KDE4 installation</1li></p>
<p>Gnome Full
installation of Gnome</p>
<p>ZenMini
Minimal Gnome distribution</1i></p>
<p>LXDE A
lightweight desktop</1li></p>
<p>Phoenix The
XFCE desktop</1li></p>
<p>Enlightenment
The beautiful e17 desktop</1li></p>

Command Line Interface Intro: Part 9

<p>0Openbox Suitable for
older hardware</1li></p>
</body>

This is how it appears in Firefox:

PCLinuxOS 2010 Release

Texstar recently anounced the release of the 2010 version of this popular distribution.

Now available in the following versions
« KDE4 The base distribuion

« Minime Minimal KDE4 installaiton

« Gnome Full installation of Gnome

s ZenMini Minimal Gnome distribution

« LXDE A lightweight desktop

« Phoenix The XFCE desktop

« Enlightenment The beautiful el7 desktop

« Openbox Suitable for older hardware

The emphasized or italic text is turned on and off by
the and tags. To change this to bold,
we need to replace the em with b.

To do that change only for the KDE based
distributions, we need to supply a start and end
address, and write the output to another file.

sed -e '/KDE4/,IMinimel/slem>/b>/g' 2010.html
>2010b.html

The beginning address is the first match of KDE4,
and the ending address Is the first match of Minime.

Voila! all done.

PCLinuxOS 2010 Release

Texstar recently anounced the release of the 2010 version of this popular distribution.

Now available in the following versions

« KDE4 The base distribution

« Minime Minimal KDE4 installation

« Gnome Full installation of Gnome

e ZenMini Minimal Gnome distribution

« LXDE A lightweight desktop

« Phoenix The XFCE desktop

« Enlightenment The beautiful e17 desktop

« Openbox Suitable for older hardware

sed has three more commands that aren't used very
much, and because of their unusual two line syntax,
are best applied from a file. They are a - append, i -

insert and ¢ - change.

Our new html test file has one sub-heading, which is
identified by the <h2></h2> pair. Normally, there
would be many such headings, and possibly a folder
of many html files. In such a case, the overall look of
a website can be completely changed with a small
sed script. Our little test file will suffice to show the
operation of these commands.

If | create a file with this text and name it sed-file

I<h2>K{
i\

a\

And then issue the command:
sed -f sed-file 2010.html > 2010new.html

Then any line that has the <h2> tag (that's the
address to which the group of commands between
the braces will applied) will have a row of
underscores inserted before it and appended after it.

The ¢ command works in the same manner,
changing any matching line or lines with the supplied
text. If the address supplied covers a range of lines,
then the entire block of text is replaced with a single
copy of the new text.

In addition to the commands that | have covered
here, sed has many more that would stretch us
beyond an introductory text. There are flow control
commands such as b - branch which enable scripts
to loop under certain conditions, labels to which we
can jump to perform certain operations dependent
upon the outcome of a previous one, and is usually
determined by the t - test command.

There are also a group of commands to manipulate
an area of memory known as hold space. sed reads
input lines into the area of memory known as pattern
space and some, or all, of that data can be
temporarily copied to hold space as a sort of scratch
pad. sed can't operate on the contents of hold
space. It can only add to it, read from it or swap one
with the other. The commands are: g, G, h, H, x.
They are known as get (from pattern space), hold (in
pattern space) end exchange (swap). The
uppercase versions append, and the lowercase
versions overwrite the data.

The last command that | want to mention here is 'y
which, in a not very intuitive way, means transform ~ b L
the characters in one string to the characters in =0 ad) - C)Ff > ANV (ol S8
another string by character position. The nth s rv ~ f l =) “ J - -rl J J I J:vl:" ~
character in the first string is replaced by the nth

character in the second string. As usual, an example _
shows this better. : IS W ©|0atam ¢

To force a line to lowercase so that there will be no
misunderstandings when the shell is interpreting a
script:

sed
'yIABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefg
hijkimnopgrstuvwxyz/l' myscript.sh

B Setup Error

Microsoft Windows has encountered an
unrecoverable error. Please reboot and
install PCLinuxCS. IR R

he killed

Posted by critter, April 4, 2010, running PCLinuxOS KDE 4.

(76)

http://www.pclinuxos.com

Cornnzirie] Linna lrnc2arrzic2 Iricro: Z:rre 10

by Peter Kelly (critter)

With the release of the Unix operating system in the
early 1970's, there was finally a solid operating
system and a set of tools that had been written to
utilize the advanced features that it supported. The
computing community welcomed it, and some of the
tools raised a lot of interest. One of these was the C
programming language developed by Dennis Ritchie
to enable the system and the tools to be so rapidly
developed. Another one was sed, the stream editor.
Because of the interest generated by sed and some
of the other text manipulation tools, three of the
engineers at Bell Laboratories set about developing
a programming language that would refine and
simplify some of the work done with these tools. It
was released in 1977 under the name awk, which
was derived from the initials of the three developers
Alfred Aho, Peter Weinberg and Brian Kernighan.
Brian had worked with Dennis Ritchie on the C
Language (The basic C language is still known as K
& R C), and a lot of the structure of C found its way
into awk.

Awk was written to enable quick and dirty
commands to be constructed to strip and reformat
lines of text, but by the mid 1980's so much was
being done with this program, much to the surprise
of the authors, that it was re-visited to become nawk
(new awk). Much more programming functionality
was added to help it become the scripting utility that
we have today. Linux users will most likely have
gawk, which is similar enough to nawk as to make
no difference to most users.

You may see awk written as 'awk’ and as 'AWK'. It is
generally agreed that awk is the interpreter program

for awk scripts, and AWK is the scripting language
used in those scripts.

AWK

Alfred Aho, one of the developers, described awk
like this:

"AWK is a language for processing files of text. A file is
treated as a sequence of records, and by default each line
is a record. Each line is broken up into a sequence of
fields, so we can think of the first word in a line as the
first field, the second word as the second field, and so on.
An AWK program is a sequence of pattern-action
statements. AWK reads the input a line at a time. A line is
scanned for each pattern in the program, and for each
pattern that matches, the associated action is executed."

This pretty much sums up what it does, but doesn't
even begin to do justice to the power and flexibility
of the language - as we shall see.

Using awk need not be a complicated affair. It can
be a simple one line command issued at the
console. awk '{ print $1 }' test would print out the
first word or 'field' on each line of the file test. The
variables $1, $2 ... etc. are assigned to the
corresponding fields in a record. The variable $0
contains the entire input line/record, NF the number
of fields in the current record and NR the number of
the current record.

We should pause here and be clear about with what
it is that we are working.

A 'word', which is also referred to as a ‘field', is not
only a language word it is a contiguous group of

characters terminated by white space or a newline.
White space is one or more spaces or tabs, and is
the default field separator. This can be changed to
any arbitrary character by use of the -F option
(uppercase) on the command line, or by setting the
variable FS in a script. awk -F":" {print $1}'
letclpasswd changes the field separator to a colon
and prints out the first field of each line in the file
letc/passwd which provides us with a list of all
named users on the system.

Arecord is a group of fields and can be considered
as a card in a card index system. The data on the
card can be details from a directory listing, a set of
values from the result of some test or, as we have
seen, a line from the system /etc/passwd file. The
variable RS contains the record separator, which
by default is set to a newline \n. Changing the value
of RS enables us to work with multi-line records

The command line syntax of the awk command is as
follows:

awk {options}{pattern}{commands}

The options for awk are:

-F to change the field separator
-f to declare the name of a script to use
-v to set a variable value.

We could have used -v FS=":" to change the field
separator.

There are some others, but as most awk usage is
done in a script, they are little used.

)

Command Line Interface Intro: Part 10

pattern is a regular expression set between a pair of
forward slashes as in sed and is optional. If omitted,
the commands are applied to the entire line.

commands are also optional, and if omitted, any
line that matches pattern will be printed out in its
entirety, unchanged.

If both pattern and command are omitted then you
will get a usage reminder, which is no more than you
deserve.

If using awk in a shell script, then its use is more or
less as on the command line.

An awk script is called in one of two ways

1. Create a script file named awkscript or whatever:

{
FS=":"

print $1" uid="$3
}

Call it with the -f option: awk -f awkscript
letclpasswd

2. Add a line like this as the first line of the script:
#!Ibinlawk -f
| prefer to give files like this an ‘awkish'
name - uid.awk

Make it executable chmod +x uid.awk
Call it like this: .luid.awk letc/passwd

The #! line must contain the actual address of the
awk executable, which you can check with the
command which awk.

Actually, if you are running Linux, awk is more than
likely a symbolic link to gawk, the gnu version of awk
which has a few extras, but everything here will work
with either version - unless otherwise stated. If you
want to know which one you are actually using, the
command awk --version will tell you.

In the script we just created, everything between the
braces is executed once for each line of the input file
or each record. We can also have a 'header' and a
‘footer.' These are known as the BEGIN and END
blocks. This is where we put code that we want to
execute just once at the beginning or at the end of
execution. The BEGIN block is where we would
normally initialize variables such as FS, and the
END block can be used to print a final completion
message or summary of completed commands.

The script then consists of three sections:

BEGIN{
commands}

{ command

This is the main part of the script

command}

END{
commands}

All of the sections are optional, although omitting all
three would prove pretty pointless. The following
code prints out the name of all users on the system
who have bash as their default shell.

#1/binsawk -T

BEGIN {
FS=II: II}

$7 == "\/bin\/bash" {
print 41}

Note that the slashes need to be escaped. Here, |
have used two equal signs as the equality symbol,
but awk also uses the tilde ~ symbol to match
regular expressions. Normally, we use this as
shorthand for our home directory.

But what does it do?

Well it processes text and other data.

Yes, sed does that, but if you liken sed to the search
and replace functions in a word processor, then with
awk you can add to that the programming power of a
high level language like C, floating point calculations
including trigonometry and exponentiation, string
manipulation functions, user defined functions, data
retrieval, boolean operators and multi-dimensional
and associative arrays. Unix/Linux commands often
generate tabulated test output, and awk is the ideal
tool to generate reports from this type of data, easily

providing a header, selecting and manipulating
selected parts of the data and then providing a final
section to calculate and output a summary.

In short then, awk is a report generator and
advanced scripting language that will do almost
anything, although without some serious hardware
modifications, it will not make your coffee.

With such a complex program as awk, it would be
reasonable to assume that learning to use it was
going to be an uphill struggle, but fortunately this is
not the case. If you have followed along so far
through shell scripting, regular expressions and sed,
then you have already covered most of the hard
work. There are some differences, but nothing that
will hurt your brain.

Simple awk scripts

Although awk can be, and often is, used on the
command line, it becomes most useful when used in
a script. The script can be saved and easily modified
to perform other similar tasks.

Suppose we wanted to know which ext file systems
were listed in /etc/fstab, and where they would be
mounted. We can do this easily with awk using an if
conditional statement. | have used a nested
statement here to ensure that comments are
excluded.

fif { 31 F='ug=) {
if ($3 ~ *ext.” } {
print $3 " Filesystem mounted at "$2 " “F
}
}

This reads 'If the first field does not begin with a #,
then if the third field contains "ext" followed by one
other character, then print out the file system type
and its mount point.'

This is the output on my machine from the command
JJawk1.awk /etcl/fstab

Filesystem mounted /

Filesystem mounted /data
Filesystem mounted /mnt/el?
Filesystem mounted /mnt/icybox
/mnt/kde3
/mnt/kded
/mnt/1lxde
/mnt/phoenix

Filesystem mounted
Filesystem mounted
Filesystem mounted
Filesystem mounted

awk is often thought of as an alternative to sed, and
it can indeed be used as such. Which one you use
depends upon what you need to do. Remember the
tortuous route we had to go in sed to output the size,
re-formatted date and file name from a directory
listing?

sed -n -e 's/IM/ MegaBytes/' -e 's/-\{12\}\(.\..
MegaBytes\) \([0-9]\{4\}\)-\([0-9][0-9]\)-\([0-9][0-91\)
w2 ACS)NNBWN2 \1 \5/p' sed-demo

To do this in an awk script we can start by only
considering records (lines) that:

1 ¥

2

= /- {

4 if (NF ~8) {

5 sub(/M/.," MegaBytes", $3)

6 split (%4, fdate, "-" }

@ if (43 ~ /Bytess/)} {

8 print fdate[3] /" fdate[2] "/" fdate[1] " " 43 " " §6 }
8 1

1e }

start with a hyphen (line 3), and that contain 6 fields
(line 4)

In line 5, we call the built in function sub(), which
substitutes "MegaBytes" for the "M" in the third field.

in line 6, we call another built in function called
split(). This splits up the fourth field, the date field,
using a hyphen as the field separator, and stores
each part as an element of an array named fdate.

Line 7 restricts operation to only those lines where
the third field ends in "BYTES."

Line 8 prints out the re-formatted date, pulling the
elements from the array, followed by the size and file
name fields.

Even though the script contains a lot of material that
you have never seen, | believe it is a lot less
daunting than its sed counterpart, and the output is
identical.

Of course awk can also be called from a shell script,
and indeed many system scripts make extensive use
of awk. There is an important concept to consider
when calling awk from whithin a shell script. In a
shell script, the $ indicates a variable name such as
$USER, whereas in awk, it references a field, such
as $2, which refers to the second field in a record.
When you call awk in a shell, the awk commands
must be single quoted to protect them from shell
expansion. If you passed awk the command '{ print
$SUSER }' expecting the output to be the users name
as the shells echo command would output, you
would be in for a surprise.

(7)

Awk does not see the variable, but sees a reference
to field number 'USER'. As USER is not defined, it
has a zero value, hence $0, and the entire record is
output.

owner=3

group=4
filename=9

echo owner = Sowner

echo group = Sgroup

echo filename =5%filename

RN e S S
echo

s -1 fhome/SUSER/Documents | awk

BEGIN { print "Owner\tGroup%tFile Name" }
{f if { NF -9) {

print $'Sowner""\t"$'$group’'"\t"$'$filename’}
¥

END { print "\nAll Done"}

In this bash script, we pipe the output from a
directory listing of the users home directory into an
awk command, which outputs the owner, group and
file name of each entry.

The first part of the script assigns the values to the
variables, and then echoes them to screen to show
the values that they have in that part of the script.
The directory listing is then piped into the awk
command, which has a BEGIN section to print a
header, the main section has a single print
statement which is applied to all input lines with 8
fields and an END section to end the report.

Syntax highlighting shows how the quoting is turned
on and off to allow or deny shell expansion.

Each unquoted variable is expanded to its value so
that print $'$Sowner' becomes print $3 (the third
field). Two $ signs are required, as $owner is seen
as simply 3. The \t in the command is a tab
character.

./owners.sh

group = 4
filename =9

Group File Name

jane addresses
musicclub club letter 1
musicclub club letter 2

Jane contacts

jane jan_report

The use of built in functions, as used in the script,
demonstrate some of the power available in awk. So
perhaps we should look at some of the available
functions, what they do and how we call them.

awk's built in functions can be grouped as:

° text manipulation functions
° numeric functions
° file handling functions

File handling functions in awk are best left alone.
Use something more suitable wherever possible. If
you need to control the opening and closing of files,
call the awk command from within a shell script and
let the shell control the files. Shells excel at file
handling.

Integer numeric functions included in awk are quite
complete, and should satisfy the needs of most
people. Floating point operations in awk are fine if
you need them, or as a work around to the shell's
inability to handle floats, but remember to return the
value to the shell as a text string. | have found little
use for these functions in awk, despite my daily work
requiring a considerable amount of mathematics,
there are always better tools for this, just as you
wouldn't write a letter in a spreadsheet even though
it is possible.

Text manipulation functions are really what awk is all
about, so I'll start with those.

Substitution is a common task, and awk provides
three functions to achieve this:

sub() and gsub(). These are analogous to the s
command in sed and the s command with g(lobal)
option.

gensub() This a general substitution function in
gawk. It is not found in the original awk, so beware if
your code is meant to be portable.

The first two functions are called by sub(/regexpl,
replacement, search-target). This is like saying
"substitute(whatever-matches-this, with-this, in-
this)."

The 'in-this' part is where to search for the match,
and can be a variable ($myvar), a reference to a
field ($1) or an element of an array (array[1]). If
omitted, then $0 (the entire record) is searched.
Note that if the search-field is omitted, then omit the

second comma or you will get an error.
(20)

This enables you to easily replace a particular
occurrence where multiple matches may be possible
within a record.

The gsub() function works identically with the search
target, restricting the 'global’ replacement to a
particular part of the record.

The gensub() function is called by
gensub(/regexpl, replacement, how, search-
target).

The parameter how is new. If it is g or G, then all
matches are replaced. If it is a number, then only the
match corresponding to that number is replaced.

sub() and gsub() modify the original string as it
passes through, as demonstrated in our first little
script where 'M' was changed to ' MegaBytes'. (The
string or record is modified, not the original file).

gensub() does not alter the original string, but
returns it as the result of the function. Therefore, an
assignment is required to make use of the changes.

{ owner = gensub(/jane/,
print owner
print 50

}

“lne”, ||1|| :l

This changes the first occurrence of the string "jane”
to "me," and returns the result in the variable
"owner."

As the first occurrence of "jane" is in the third field of
the file listing, we can see that "owner is indeed
"me," but the original third field $3 is unchanged, as
we can see by printing out $0 - the original input
record.

T 1§1s -1 m* |

g > Wy 5 /awkscript.awk
Xxr-x 1 me jane 908 Nov 10

009 myfilel*

-rwxr-xr-x 1 jane jane 908 Nov 10 2009 myfilel#*

Instead of assigning the result of the function to a
variable, it can be assigned directly to the print
command like this:

print gensub(/jane/, "me", "1").

split() is another function used in the first example
and is an extremely convenient tool to have around.

Split(string_to_split, name_of_an_array,
separator)

It takes a string, specified as the first parameter,
searches for what is specified as a separator in the
third parameter, and stores each separated 'chunk’
as an element of the array specified as the second
parameter. The separator can be a single character
or a regular expression. If it is omitted from the
command, then the current value of the awk variable
FS is used. If it is the empty string ", then each
individual character is stored in a separate element
of the array. The return value of the function is the
number of elements in the array.

This is great for tasks like dealing with names and
addresses, or for converting a numerical value into
its text equivalent.

In this example we feed a date to the script in a
space separated numeric form and output the date
with a textual month.

BEGIN {

shortmonth = "Jan Feb Mar Apr May Jun Jul"
shortmonth = shortmonth " Aug Sep Oct Nov Dec"
split (shortmonth, mnth)

}
{ print $1 " " mnth[$2] " " $3

}

The months are pre-loaded into an array in the
BEGIN section of the script. The second assignment
statement needs to include a separating space at
the beginning, or we would get a month called
‘JulAug'. Also, in the second assignment statement
is another feature of awk, concatenation by including
a space between the variable name and the string to
be joined to it.

jan aisy > ~
22 May 2010

$ echo 22 5 2010 | ./awkmonth.awk

length() a nice, easy one.

length(string)

It simply returns the length of the supplied string or,
if no string is specified, the length of the current line
$0.

substr()

substr(string, start-position, max_length)

This function returns the sub-string that begins at
start_position, and extends for max_length

(=)

characters or to the end of the string. If max_length
is omitted, the default is the end of the string.

The function returns the sub-string found. It is not
used to change a part of a string. Use sub() for that.

These functions can also be used on the command
line, although they a more usually found in scripts.
To demonstrate command line usage, we can send
the output from the uname -r command (which
shows the release of the currently used kernel)
through a pipe to awk, and apply the substr()
function to find only a part of the output and print
that part to screen.

|iane@daisy > ~ $ uname -r

12.6.26.8.tex3

ljaneadaisy > -~
268

$ uname -r | awk '{print substr($1,5,4}}'

When you need to find the position of a sub-string
within a string awk provides the index() function.

index(string, substring) The return value is the
start position of the sub-string, or O if it is not found.

| { place = index(%0, "AMD")
print substriso, place)

.6.26.8.tex3 #1 SMP Mon Jan 12 04:33:38 CST 2009 i686 AMD Athlon(tm
1 Core Processor 4800+ GNU/Linux

We find the start of the processor description, and
then use the return value to cut out a sub-string from
there to the end of the line. In this way, we don't
have to know how many words will be in the
description.

A similar function is match().
match(string, regular_expression)

Instead of searching for a simple substring, the
match() function uses the much more powerful
regular expression pattern matching. The return
value is, like index(), the starting position of the
match, but this function also sets the value of two of
awks variables: RSTART & RLENGTH

Here's a file we created right at the beginning of this
course:

jane@daisy > ~ % cat newfile
This file was created in terminal 2 on
6 09:40:50 GMT 2009

Sun Dec

If we look for the beginning of the time string in the
second line:

{

place = match({ %8, /[8-9][B-9]:/)

if (place) print place, RSTART, RLENGTH
}

We get this result, only the second line contained a
match.

- $ cat newfile | ./awkmatch.awk

Something that we often need to do is to convert the
case of characters or strings from upper case to
lower case, or from lower to upper.

Awk has a pair of functions that automate this
process. They are called, not surprisingly
toupper() and tolower().

They each take a single string as an argument and
return a copy of that string, with all of its characters
converted to the respective case.

~ % uname -0

> ~ % uname -o | awk '{print tolower($0)}’

~ % uname -0 | awk '{print toupper($0)}"'

What could be easier?

While we are dealing with text, | should mention the
sprintf() function.

This function works just like the printf() function we
used in bash shell scripting, except that this one
doesn't print out the text. It returns a formatted copy
of the text. This is extremely useful and can be used
to create nicely formatted text files, where the fields
of a record may be of indeterminate size.

You probably noticed that the output from the
owners.sh script we used to demonstrate passing
variables in a shell script was ragged and untidy. If
we use the printf statement, instead of the simpler
print command, we can specify exactly how we want
the report to look.

(s2)

group=
filename=9

ls -1 /home/SUSER/Documents | awk
BEGIN {

printf("%-105%-155%s","Owner", "Group", "File Namein\n") }
{if (NF ~9) {
printf("%-105%-15s%s\n", $'Sowner', $'Sgroup', $'Sfilename')}

}

END {
print "\nAll Done"}

£ ./owners2.sh

Group File Name

jane
musicclub
musicclub

jane

jane

addresses
club letter 1

club letter 2
contacts
jan _report

The formatting rules are the same, and the fields to
be output can be given a fixed width or, in the case
of numerical fields, a pre-determined format or
number of decimal places. Leading and trailing zero
suppression is supported, as is padding of shorter
fields with spaces or zeroes, as appropriate.
Actually, all variables in awk are stored as strings,
but variables containing numeric values can be used
in arithmetic functions and calculations.

A nice feature of awk is that arrays are associative.
What this means is that an array is a group of pairs.
An index and a value. The index doesn't have to be
an integer, as in most programming languages. It
can be a string. The index is associated with the
value. The order then is irrelevant, although you can

use numbers as the index to an element of an array.
Its numerical value has no meaning in awk, only the
fact that it is associated with a particular value is of
interest. This makes arrays in awk particularly
flexible and efficient. In most programming
languages, arrays must be declared as to the type of
values that will be stored, and the maximum number
of elements that will be used. A block of memory is
then allocated for that array, and size and type
cannot be changed. awk, however, doesn't care
about any of that. The indices may be anything that
you wish. The stored values may be any mix of
things that you wish, and you may add as many
elements as you wish.

Associative arrays are particularly useful in look up
tables. If you had a text file named phonetic with
contents like this

a Alpha

b Bravo

¢ Charlie

y Yankee
z Zulu

Then we could read it into an associative array and
use the array to convert characters to their phonetic
equivalents.

{codes[51]=52}
END{print codes["c"]"

"codes["a"]" "codes["t"]}

alsy = -~ § ./phonetic.awk phonetics

harllé Alpha Tango

If you happen to run out of steam with awks built in
functions, or you find yourself repeating code, there
is nothing to stop you writing your own functions.

Functions must be declared before any code that
uses them, pretty obvious really except that they
must be declared before the code block that calls
them. This means that the function code should
usually be written outside of and before the main
loop.

The syntax for a function declaration is function
function_name (parameters) {actions}

The keyword function is mandatory.

function_name may be almost anything you like
that is not a reserved word, a variable name or a
pattern of characters that could be wrongly
interpreted by awk. It should also begin with a letter
or underscore character.

parameters are a comma separated list of variables
that get passed to the function by the calling code.
The names of the parameters are used by the
function, and do not have be the same as the name
of the argument being passed. Only the value is
passed to the function. Mostly though, it is less
confusing if the names are kept the same.

Any actions inside the braces are what the function
does with the passed parameters, and if a return
statement is included, then that value will be
returned to the calling code.

If a script called a function name myfunction with
the command result = myfunction(string), then

(z2)

return newstring in the function code would return
the value that the variable newstring holds in the
function to the variable result.

If we wanted to make more use of our phonetics
script by passing it any phonetics look up list and an
arbitrary string to translate, we could write a function
to do the translation.

function translate | ¢
splitic, letters, "")
1l=length{c)

for (1 =1; 1 == 1; ++i}{
print codes[letters[i]]}
"y ; R

, codes){

i] -
codes[51]=52

}

END{ C [1t
translate(c, codes }

¥

The function appears before the main loop and has
two parameters passed to it, ¢ is the string to
translate and codes is the array of lowercase letters
and their associated phonetic codes. The string is
split into single characters by using an empty string
as the field separator, and then stored in an array
named letters. The length of the string is required to
limit the loop, which loops round from one to the
number of characters in the string printing the code
that corresponds to the current letter.

In the main loop, the input data file named phonetics
is read into the codes array.

In the END section the function is called and passed
the string ¢, which is passed on the command line,
and the codes array.

Here is the output from a sample run.

jane@daisy > ~ $./phonetic2.awk phonetics c=pclinuxos
Papa
Charlie
Lima
India
November

Sierra

Passing the name of the data file on the command
line is useful if there are several data sets that you
wish to switch between, but if there is only one, we
can get the script to read it in by using awks getline
function.

BEGIN{ while (getline < "phonetics")
codes [$1]=52}

function translate(c, codes){
split(c, letters, "")
1=1length(c)

for (i =1; i <= 1; ++1i){

if (letters[i] ~ /[a-z]1/).
print codes[letters[i]]

Elsa
print letters[i]
: }
1
{

c=tolower(s0)
translate(c, codes)

2

In the BEGIN section, the data file is read in using a
while loop to repeat the process until we get an
empty line. Each line is stuffed into the array codes.
The string to translate is converted to lowercase at
the start of the main loop, and in the body of the
function, a check is made with a regular expression
to see if the letter is in the range a-z, in which case it
gets converted. If it is not in that range, then it is
output as is, this takes care of spaces, humbers and
punctuation. The strings to be converted may be
piped in to the script, or can be typed interactively on
the command line as below.

./phonetic3.awk

Radically Simple
Romeo

Alpha

Delta

India

Charlie

Alpha

Lima

Lima

Yankee

Sierra
India
Mike
Papa
Lima
Echo

(24)

Cornrnizirie] Lirl2 [nrarrzie2 [nrro: Z:re 171

by Peter Kelly (critter)

A handful of the more useful commands

So far in this series, we have looked at most of the
important aspects of working on the command line.
This time | want to spend a little time looking at
some of the more useful utilities available in a Linux
distribution.

This is not meant to be an exhaustive list. There are
far too many such commands available for that, but
is a look at those utilities that you should find in
almost any distribution, either installed by default or
available from their repositories.

These are commands that you may not use every
day, but you will find invaluable when you do need
them. They are commands that | have not already
covered, or that are deserving of a little more
explanation. | am not going to cover every possible
feature of the commands. The manuals are there for
that, but | hope to cover them in enough detail to
give a good understanding of what the command is
capable of.

apropos {string}

Ever been stuck at the command line, knowing what
you want to do, but can't for the life of you remember
the name of the command? Of course, we all have,
and this is where this command saves the day. It
searches a database of manual page descriptions
for things that match the string that follows:

- % apropos calc
(1) - An arbitrary prec
(4) - Calcomp input dri
(1) - calculate VESA CV
(1) - an arbitrary prec
(3pm) - Modules that ca
Digest::file (3pm) - Calculate digesf
gtf (1) - calculate VESA GTH
ipcalc (1) - perform simple ma
Math::BigInt::Calc (3pm) Pure Perl modulg
Math: :BigInt::CalcEmu (3pm) - Emulate low-le
Math::BigInt::FastCalc (3pm) - Math::BigInt:

bigest

at {options}{time}{date}

This enables you to have commands executed at a
particular time. Where cron is used for running
repetitive tasks at a particular time or frequency, the
at command is useful for one-off tasks. To use it, the
atd service must be running. This can be determined
by issuing, as root, the command

/sbin/service atd status

It may be started, if necessary, with the command
/sbin/service atd start

You start the command by typing at followed, by a
time, and optionally, a date. If the -f option is
specified with a file name, then the list of commands
to be executed are read from that file. Otherwise,
you a prompted to enter them at the terminal. Entry
is terminated with Ctrl-d.

The way time is specified is rather unusual. It may
be entered in the format 15:30 for a 24 hour clock,
or 3:30pm for a 12 hour clock. You may also specify
time as midnight, noon, teatime (4:00pm) or now +
2 hours, and you can add today or tomorrow. Date

takes the format March 15 or Mar 15. The year is 4
digits, e.g. 2010. You can simply specify a day, Sat
or Saturday. An increment can be added to any part
of the time date string.

When commands are executed any output or error
messages are mailed to the user, but you must have
the sendmail service installed and configured to
make use of this. Instead, most users will want to re-
direct the output to a file.

Each set of commands is given a unique job
number, and pending jobs can be listed with the
command atq. Jobs can be removed from the queue
with the command atrm job-number.

basename {name}{suffix}

This command is used to remove all leading
directory names and, optionally, the suffix from a
fully qualified file name. So, basename
/home/jane/scripts/myscriptil.sh would
return myscriptl.sh, and basename
/home/jane/scripts/myscriptli.sh .sh
would return myscriptl. You will find this command
invaluable in scripts.

bc

bc is a command line calculator. That much is
basically true, but it is also a gross understatement.
It is a complete, compilable language, similar to C,
which is capable of unlimited precision arithmetic. It
has an extensive library of mathematical functions,

(=)

which you can include with the -1 option, and you
may define your own functions. Most people
however, will use it interactively on the command
line, or use it in a script to do a quick calculation or
conversion.

To use bc on the command line, you may simply
type bc and you will be greeted with a banner
declaring version and licensing information, (this can
be suppressed by using the -q option), and a
prompt.

Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty'.

You can then simply type in expressions, such as
2+3 or 3.1416*6, and the result will be echoed to the
screen (stdout). To end the session, type quit or
ctrl-d.

If you don't use the -l option, which will use long
floating point numbers, then integer arithmetic is
used. In the bc language, the scale of precision is
zero, which means that zero decimal places are
displayed. This can be changed by setting the
variable scale. Using the -l option sets this value to
20 by default, which displays 20 decimal places.
Note that if you use a value in an expression with
more decimal places than the current value of scale,
then that number of decimal places is used to
display the result.

If you intend using bc then, as you don't need to
know the version stuff every time, and bash can
handle integers just fine, then you may want to put
an alias in your .bashrc file.

alias bc="bc -1q”

The bc command is often used in pipelines and
redirection, as in the following examples:

echo 3.1416*2.5 | bc -1

bc <<< 2132

Or, the expressions can be read from a text file:
cat > sums

2+3

s(1.34) #sine 1.34 radians

scale=5

7/3

quit

Comments are allowed, and are preceded by a hash
#. Without the quit statement, bc would wait for more
input from stdin.

ane@d ~ 5% bc -1g sums

J
5

.97348454169531937478
2.33333

The bc command can work in any base from 2 to 16,
but defaults to base 10.

To change this use the variables ibase and obase
for the input and output bases. This is extremely
useful if you need to convert between binary,
hexadecimal, octal and decimal. The following bash
script converts decimal to hexadecimal:

#!/bin/bash
#d2h.sh convert decimal to hexadecimal

if [$# 1= 1]; then
echo "Usage: d2h decimal-value"
exit 1

fi

echo “ibase=10; obase=16; $1" | bc

./d2h.sh 123456789

Should you want to edit this script to reverse the
operation, hex to decimal, be aware that obase must
be in ibase format:

ibase=16; obase=A

And hexadecimal letters must be in uppercase,
since lowercase characters are reserved for bc
variables. You could pipe the value through the awk
toupper function, or use the tr command before
passing it to bc to ensure that this is so.

cksum {files}

If you are transferring or compressing files, you may
find this command useful. It calculates a cyclic

(z6)

redundancy (CRC) value for all files specified on the
command line. This value can later be used to check
the integrity of the file.

jane@daisy > mydirl $ cksum m*
2199948655 281389 musicfiles

1538883127 960 myfilel

clear

Clears the terminal screen, nothing else. Simple, but
essential.

comm {option}{file_a}{file_b}

When you need to know how similar two files are,
use this command. The output is is in three columns:

daisy > ~ $ comm contacts contacts2
AMY
BOB
GEORGE
GLENN
GUSTAV
JOHN

SIMON

SALLY
FRED

~ % comm -12 contacts contacts2

lines only in file_a, lines only in file_b and lines
common to both files. There is an option to suppress
certain columns by listing their numbers with no
spaces. -12 would suppress columns 1 and 2, listing
out only lines common to both files.

cut {options}{files}

You can use this to chop out fields of data from files
specified, or from stdin. The options allow you to
specify a list of bytes -b, columns -c or fields -f to
cut. If -f is specified, the default delimiter is the tab
character, but this can be changed with the -d
option. -s with -f suppresses lines with no delimiters.

If the file contains multi-byte characters, you have
the -n option to avoid splitting them. The list of fields
can be comma separated values, or ranges 2-5.

jane@daisy > ~ $ lsusb | cut -d" " -f1-4,7-26

B 861 Device 001: Linux Foundation 2.6 root hub
001 Device 0083: Standard Microsystems Corp.
001 Device 005: Realtek Semiconductor Corp. Card Reader
001 Device 006: Canon, Inc. CanoScan N67@U/N676U/LiDE 20
001 Device 007: Hewlett-Packard Desklet 930c
0062 Device 001: Linux Foundation 1.1 root hub

062 Device 002: Logitech, Inc

003 Device 001: Linux Foundation 1.1 root hub
003 Device 002: Novatek Microelectronics Corp.
064 Device 001: Linux Foundation 1.1 root hub
065 Device 6061: Linux Foundation 1.1 root hub
006 Device 001: Linux Foundation 1.1 root hub

Here, we have asked for a list of usb devices
available on the system. The delimiter is a space
character, and we are not interested in fields 5 & 6.
As the delimiter is a space and the name contains
spaces the final range, 7-20, has been made wide
enough to catch all words.

df {options}{device_name}

This is a handy little utility to report disk free space.
If name is omitted, then all mounted file systems are
reported. Name can be a device name, such as
Idevisdbl, or a mount point, such as /lhome. If a
directory name is used, then the report is of the
entire file system on which that directory is mounted.

Options include:

-a shows all file systems including 'dummy’ files
systems such as /proc

-1 to show inode usage rather than byte usage.

-h reports in human readable form e.g. 15G

-t only include type file systems -t ext4

-T include the file system type in the report

-x exclude listed file system types.

If you are using PCLinuxOS you will find that you
have an alias to the command:

alias df='df -h -x supermount

This makes the report human readable, and doesn't
probe supermount file systems. Supermount is a
fake file system used to handle removable media,
such as CDs and floppy disks.

It is important to monitor drive usage as a full drive
can cause strange problems, particularly if an
application or script has not been crafted in such a
manner as to trap this.

(s7)

dirname {name}

The opposite of basename, this strips away the file
name in it's entirety, by searching for the last .
dirname /homeljane/scripts/myscriptl.sh would
return lhomeljanelscripts.

If there are no leading directories, as in
myscriptl.sh, then . (a period specifying current
directory) is returned.

du

Reports the disk usage or the space used by a
directory, the default is the current directory.

This is one of the ‘core utilities.' You should find it on
any Linux system, as it is considered essential,
although most people will use few of its twenty or so
command line options. If you are using PCLinuxOS,
then you will have an alias to du that adds the -h
option automatically, to make the output 'human
readable'. Other options that are often used include:

-¢ Print a grand total at the end of the output
-s Summarize only. Outputs just a total
-x Limit the count to files on one file system only

--max-depth=n Restrict the report to directories n
levels deep. note that this is a 'long-option' and is
preceded by two hyphens not one.

file {file name}
When you want to know what type of data is in a
particular file, use this command.

jane@daisy > pixmaps § file svg-viewer.svg

svg-viewer.svg: SVG Scalable Vector Graphics image

fmt

If you have a plain text file that you need to fit in a
restricted screen or paper space, then this command
does a nice job of it. It endeavors to retain as much
of the original files formatting as possible. Spacing
and indentation are kept intact wherever possible,
and line breaks are done at the ends of sentences.
The most useful option here is -w to set the width.
fmt -w 36 a-text-file will output the file in a single 36
character wide formatted column.

free

When your system seems particularly slow or
sluggish, you should you should use this command
to check your memory usage. The options -b -k -m
& -g display the output in bytes, kilobytes megabytes
or gigabytes respectively. The default is kilobytes.

jane@daisy > ~ $ free -m
total used shared buffers
Mem: 1011 258 [¢] 48

-/+ buffers/cache: 94
Swap: 520]

Normally, you have two types of memory: physical,
and virtual or swap space. When an application is
started, the kernel allocates it some memory to work
in. Additionally, the application may request more

memory as demand from the user increases. Data
can be stored in a cache, in readiness to be
operated on by the application, and temporary data
and results are stored in buffers. For example, when
a CD burning application is writing data, then that
data is read from the hard drive much more quickly
than it can be burned to the CD, and so the data is
stored in a buffer where it can be accessed as
required.

When the kernel has exhausted its supply of
physical memory, it begins to 'swap out' some of the
allocated memory contents to virtual memory to
relieve the situation. Swap is much slower than
physical memory, and so the result is that the
machine slows down.

If you experience high swap memory usage, then
something needs to be done.

You can shut down some applications, which will
help, or you may have a rogue process hogging
resources, remember orphans and zombies from
when we discussed processes? If you need to track
down which processes are using the most memory,
use a tool like the command top. It may even be that
you need to fit more memory to the machine if you
regularly get this situation.

In the screen dump above, the top line is the
physical memory, the bottom line swap and the
middle line is the amount of memory used or free,
without that which is promised to buffers and cache
storage.

()

fuser {file or file-system}

Have you ever tried to umount a usb or other type
of external drive, only to be told that it is busy with
some process or other? Although you thought that
you closed down all of the files on the device, the
system thinks otherwise, and it refuses to let you
safely remove it.

This command is what you need at times like this. It
lists the process ID (PID) of all active files on the
specified path. Now, path here can be a path name,
a mounted directory, a block device such as
/dev/sdbl or even a remote system such as an ftp
server.

For our usb drive example, we need to specify the
-m option to tell the command that what follows is a
mount point or block device. The PID is not very
informative, so we specify the -v option to get
verbose output that tells us what the file(s) actually
is (are). As we want to remove the device, we need
to kill the process(es), so we add the -k option. This
however, is potentially dangerous, as we have
forgotten what the file is. How can we be certain that
we have finished with it and saved any changes? To
be safe, rather than sorry, we can add the -i option
that interactively asks for confirmation before killing
each process.

fuser -mvki /media/usb/ This will list any files
open on the device and prompt you to delete them
or not.

Once we have closed all the open files, we can
resume the umount command.

gzip & gunzip

There are many file compression tools around, and
gzip is one of the best of them. This one is so tightly
integrated into so many Unix/Linux practices and
processes that knowing how to use it is a must if you
are going to spend any time on the command line.
Using it is easy anyways, so why not? Compressed
files save on storage space, not such an issue these
days, and transfer much more quickly over slow
transmission lines and networks.

The easiest way to use this is simply gzip file nhame.
Unusually, this changes the original file and does not
create a new one. The file is compressed and .gz
appended to its name. Among the options you can
pass to it are:

-d decompress -- this is exactly the same as gunzip

-s suffix to change the default gz to something
that you prefer

-n where n is not the letter n but a number from 1 to
9 that will determine the amount of compression to
be applied. 9 is the maximum compression. You may
also use -fast or —best in place of -1 and -9. The
default here is 6, which is fine for most uses.

-r if you pass a directory to the command, then this
will recursively work on the files it contains.

Multiple files may be passed on the command line
as arguments.

head

head is useful for displaying just the first few lines of
a file. By default, 10 lines are shown, but this can be
changed by passing the number of lines required as
an option, e.g. head -15 logfile. See also tail.

kill

When you find that a process is misbehaving and
you want to end it, then use this command.
Obviously, you must be the owner of the process or
have superuser privileges to do this.

To use it, you send it a signal as an option, and
provide the PID of the process(es) to be dealt with. If
no signal is specified, then the default signal TERM
is used. The signal can be specified as a number or
as a name. The TERM signal is number 15 and is
named SIGTERM. Some processes can trap the
signal being sent to them as a sort of survival tactic,
and stubbornly refuse to die. In these cases, use
signal number 9 , SIGKILL this cannot be caught,
but it is rather drastic and a more graceful closure is
to be preferred.

Kill -9 1729 will stop process number 1729 in its
tracks.

To get a list of all signal numbers and their names,
use the -l option.

(=)

less

To display text files on a terminal screen in Unix, a
command named more was created (pressing the
space bar showed more text). It was quite limited
and fairly clumsy to use, with most of its commands
being based on the vi editor.

Soon, a much more capable alternative came on the
scene and, perversely, was named less. This is one
of those commands that has far too many options for
me; | like to keep things as simple as possible. If
there is something that you want to do with a text
file, then less is probably capable of doing it.
Usually, | just want to look at the text and scroll back
and forth. For this, it is excellent.

Type less textfile and the beginning of the file will
be displayed on screen. Press f or the space bar to
go forward, b to go backward or use the arrow keys
to navigate around. Press ¢ to quit. What could be
simpler?

To search within the file, type a forward slash,
followed by the word or pattern that you want to find
and press return. Use ? In place of the slash to
search backwards.

For me, this suffices. If | want to do more, | use an
editor.

namei

Trace a path name to its conclusion.

This rather unusual command is actually quite
useful. On my system, | have the ‘'all bells and
whistles' version of vi installed — vim.

When | type Ibinl/vi on the command line | am given
an editor that happens to be vim. If | use the which
command to find out what will be executed by typing
vi, | get this:

which vi
/usr/bin/vi

So what's going on here?

namei will follow the path name, through any links,
and display a character to describe the type of each
file found. These characters are:

regular file

block device

character device

directory

the path name currently being worked on
link

socket

an error

N HE-HhQ O T

Typing namei /bin/vi gives the following output:

~ % nameli /bin/vi

d bin
1 vi -> /etc/alternatives/vi
d./

d etc
d alternatives
1 vi -> /usr/bin/vim-enhanced

bin
- vim-enhanced

This shows the links that the command Ibinl/vi has
gone through, and that | am really executing
lusr/bin/lvim-enhanced.

Ps

Display information about processes running on the
system.

This is how you can find out which processes are
using system resources, who owns them and their
PID's.

Armed with this information, you can deal with any
processes that step out of line or that are just taking
up space. The output can be quite long, and you will
find that this command is often used with grep to
filter the information, and then piped to less to give
time to read it.

The command comes with enough options to satisfy
even the most enthusiastic systems administrator,
but us mortals can mostly get the results with just
four.

a list all processes

u include the username of the owner of the process

x include processes that are not associated with a
terminal

f display a tree like structure to show parent/child
process relationships

A leading hyphen is not required with these options
and should not be used, as it can change the

(20)

meaning of some options. The output is a series of
fields displayed in columns, and what is output is
dependent upon which options are used.

The first line of output contains the column headers,
which describe what follows below. The interesting
ones for us are:

USER process owners user name

PID process ID number

%CPU amount of processor time used

%MEM percentage of physical memory used by the
process

VSZ virtual memory size in KB

TTY the terminal on which it is running, if any.

STAT process status which can be one of the
following:

in a deep, uninterruptable sleep
sleeping or waiting

running or in the queue to be run
stopped

dead, you should never see this as it
should have been removed from the
process queue

Z zombie - you should remove these

X=-20w»mwo

Additionally, you may also see alongside these
codes one or more of the following:

nice, low priority

high priority
multi-threaded

locked pages in memory

rF=NZ

s session leader
+ foreground process

COMMAND The name of the process

reset

Occasionally, you may find that your terminal gets
corrupted. This is quite rare these days, but it can
still happen, and you get nothing but garbage on
screen. Just type reset, even if you can't see what
you are typing, and things should soon be back to
normal.

rm

This is one of the most basic file handling
commands, and potentially one of the most
destructive. It removes files, or rather it removes the
directory entry for the file, although the data is still
on the disk until over-written. You do not need write
permissions on the file to remove it, only write
permissions on the directory that contains it. When
used with the -r option, it will remove files recursively
from directories, which is obviously dangerous, and
for that reason, most systems have an alias that
reads alias rm="rm -i'. This makes the command
interactively prompt for a y or n before removing the
file.

script textfile

After typing this command, everything you do at the
terminal is copied to the file 'textfile' (or whatever you
called it).

This can be helpful if you need to show somebody
how to do something at the terminal, and it has the
added advantage that once you have it right, you
can edit out all your failed attempts.

stat

Prints out information about a file gathered from the
inode that holds the files metadata.

y $ stat musicfiles
¢ “musicfiles’

1 5324 Blocks: 16 I0 Block: 4096 regular file
: 306h/774d Inode: 98559 Links: 1

s: (0644/-rw-r--r--) Uid: (501/ jane) Gid: (500/ jane)
: 2010-06-13 12:54:17.000000000 -0500

y: 2009-12-06 05:14:10.000000000 -0600

ge: 2010-06-06 10:53:15.000000000 -0500

If you ever see the error message "can't stat file
Fkkkkkkkikk!! it usually means that the file doesn't
exist (in the directory that you instructed the
command to look for it).

tac

Where cat prints out files first line to last line, tac
prints last line to first line, reversing the order. This
behavior can be modified by changing the separator
using option -s. The default is a newline.

(=2)

tail

Tail is useful for displaying just the last few lines of a
file. By default, 10 lines are shown, but this can be
changed by passing the number of lines required as
an option e.g. tail -15 logfile. See also head.

tee

Use this when you want the output from a command
to go to more than one place. You might want to
view the output of the command and to also save it
to a file:

cat /etc/fstab | tee ~/myfstab

This would display the file on screen, and also write
it to a file in my home directory.

Multiple destinations may be specified. The -a option
appends the information to a file.

uname

You can display information about the machine and
its operating system, and this information can help
when troubleshooting.

/ 2.6.26.8.tex3 #1 SMP Mon Jan 12 04:33:38 CST 2009 i686 AMD Athlon(tmj

ux daisy 2.6.26.8.tex
) 64 X2 Dual Core Processor 4800+ GNU/Linux

The options are:

-a all information

-m system hardware
-n network host name
-r kernel release

-S operating system
-p processor type

-V kernel build info.
uniq

This command finds duplicate lines in a sorted file.
The lines must be next to one another, so the file
must first be sorted.

This is usually done on the fly with the sort
command.

Suppose that you had a file containing a list of
objects, and you believed that some of them may be
duplicated. Jane has a list of American states in no
particular order.

To show only those states that are duplicated, you
can use the -d option.

jane@daisy > ~
Arkansas
Kentucky
Minnesota

$ sort states | uniq -d

To find out how many times each duplicated entry
appears, use the -c to add a count. This would be

useful to make an inventory if the list was a stock
list.

y > ~ % sort states | unig -cd
3 Arkansas

2 Kentucky
2 Minnesota

To get the list that Jane wants, a sorted list with no
duplicated entries, the output of the command with
no options is sent to a new file.

~ § sort states | unig > states2
~ $ 1s -1 states*

- 1 jane jane 508 Jul 11 13:18 sta
- 1 jane jane 472 Jul 11 13:22 s

The file size shows that the duplicated entries have
been removed.

wcC

Use this command to count the number of
characters, words or lines in a file, with the
corresponding options -c, -w or -l.

jane@daisy > ~
32 /etc/passwd

S wc -1 /etc/passwd

jane@daisy > ~ $ wc -w /usr/share/dict/words
483523 /usr/share/dict/words

Of course, the input doesn't need to be a file. You
can pipe the output from another command to count
the number of results returned.

(o2)

whatis

Have you wondered, "what does that command do?"
This command may help by printing a one line
description from the man pages.

If nothing is found, then it politely replies "Nothing
appropriate.”

whereis

This command will search for, and output, the full
path to the executable file, the man pages and the

source of any command.

The -b, -m and -s options will limit the search to the
binary (executable), manual or source files only.

who

Although originally intended for multi-user systems
to find out who was logged on, this command has a
few useful options on a stand-alone system.

who -b will tell you the last time the system was
booted

who -d gives a list of dead processes

who -r displays the current run level

Adding -H will add a row of column headings to the
output.

You may also type who am i, which seems pretty
pointless, and there is also a stand alone command
called whoami. These return different results
depending upon your situation. Consider this:

[jane@daisy ~]% who am 1

jane pt 2010-07-16 17:06
[jane@daisy ~]1% whoami

jane

[janead

6 17:86

Here, both commands return your usual user name
when you are operating as a normal user. However,
when you switch users with the su command, the
who am i command tells you who you really are
logged in as, and the whoami command tells you
who you are being seen as when issuing
commands.

This is particularly useful in scripts to check the user
integrity before issuing a potentially disastrous
command.

xargs

This is one that you really should have a good idea
about. It allows you to pass as many arguments as
you like to a command.

This can be difficult on a command line, but this
command is a boon in scripts, and that is where it is
often found.

With the xargs command, you can re-direct the
output from a command as a series of arguments to
another command.

find -iname "c*.sh" | xargs 1lpr

This will print out the contents of all the files in the
current directory that begin with ¢ and end with .sh
(shell scripts?) to your printer - even if there are

thousands of them that couldn't possibly be listed on
the command line.

In a shell script, you will rarely know how many
results you will receive from a command, but this
command will pass them all to your destination
command sequence, and you may filter the stream
to pass over only the results that you are interested
in.

And the rest?

Well yes, there are many, many more commands at
your disposal when you are using the command line
interface to a Linux or Unix system. The few that |
have described above are the ones that | find most
useful, and all of them have a great deal more
functionality than | have described here.

Linux has almost all of the commands readily
available to do whatever you wish, and you can

(o)

create your own, personally tailored commands to
perform the functions that you cannot readily find
available.

You can then offer them to others who may find
them useful. This is the way that Linux/Unix
developed, and sharing and developing is the basis
of the open source community, which has provided
us with a superb, free operating system.

It's easier than E=mc2
It's elemental
It's light years ahead
It's a wise choice
It's Radically Simple
It's ...

2O m

—
—— | L

Posted by Leiche, June 27, 2010, running PCLinuxOS LXDE.

(=)

http://www.pclinuxos.com

Cornnzirie] Linn2 [rrarr:1e2 Incro: Z:ire 172

by Peter Kelly (critter)

The vi editor

I'll be honest. | don't like vi. The newer vim (vi —
improved) is well named, being an improvement,
but none the less, still vi. | find that the commands
are not intuitive and, unless you use it regularly,
difficult to remember.

The main reason to learn vi is that you must do it if
you are going to use the command line in any sort of
a serious way. Also, it is sometimes the only editor
available, but it invariably will be available. Some
system commands, such as cron, rely on vi, and it
will drop you straight into vi when editing crontab.
The sudo command insists that you use a special
version of vi named visudo to edit its configuration
file /etc/sudoers, although it is not really necessary
to do so. Many other system utilities base their
commands on this editor.

Although I personally don't like vi, | have to admit
that it is a very powerful editor. And, once you are
familiar with vi, it can be a very fast way of editing
text files. There is a lot of documentation available
for vi and vim, if you want to learn how to use it as a
professional. Here, | will show you the basics that
can be learned in just a few minutes, and will enable
you to do most of the editing that you need to do to
get out of a sticky situation, when vi(m) is the only
editor available.

You start the application by typing vi, followed by a
file name. If the file doesn't exist, then it will be
created when you save your changes. You may also
open a file at a particular line number by typing a

plus sign (+), followed by a number, or at the first
occurrence of a pattern of characters with a +, then
a forward slash (/) and the pattern to be matched.
This is useful when editing a script and trying to get
a particular section working correctly. Try vi
+/SUSER Jetclpasswd to open that file at your entry
in it. If working as an ordinary user, the file will open,
but as you don't have write permissions, it will be in
read-only mode. This fact will be displayed at the
bottom of the screen.

The first thing that most new users fail to do is to get
out of the application, as there is no easy "quit" or
"exit" command. Let's get this out of the way right
now. vi is bi-modal. This means that it has two
different modes of operation: command mode and
insert mode. When you open a file, you are placed in
command mode, with the text of the file on screen,
which you can move around in but not edit directly.
To edit the file, you need to issue a command that
will put you into insert mode. But you cannot exit the
application from here, and that is mostly what
confuses new users. To exit insert mode, you press
the escape key. If you forget which mode you are in,
or just feel lost, then press the escape key and you
will always be put back to command mode.

Once in command mode, you can exit the program.
To do this, type a colon, which will appear at the
bottom left of the screen. vi then waits for you to
type a command. The command to quit is q. If there
have been no edits, then the application exits and
returns you to the command line. If the text of the file
has changed, you will get an error warning stating
"no write since last change". Now you can do one of
two things.

wq the w writes out the changes then quits
:q! the exclamation point tells vi to discard
the changes and then quit.

In summary, to exit the file, press escape, then type
wq.

Moving around in the file can be done with the
cursor keys, but was traditionally done by using the
h j k | keys to move left, down, up or right
respectively (I to go right?). To move one full word
forward press w and then b to move back a word,
and 0 and $ to move to the beginning or end of a
line. Ctrl-f and Ctrl-b moves forward or backward a
screen at a time. Ctrl-d or Ctrl-u moves up or down
half a screen at a time.

In command mode, you can use the following
commands:

c change

d delete

y yank which means copy

p put or place the yanked text at the cursor

When you issue the ¢ or d commands, the text is
removed from the screen and placed in a buffer
known as the cut, or yank, buffer. The y command
places a copy of the text into the buffer, leaving the
screen unchanged. You can then re-position the
cursor and press p to "put” the contents of the buffer
at that position. The stored text can be re-used as
many times as required, until it is replaced by
another operation.

(=)

What you change, delete or yank are objects,
including words, lines, sentences, paragraphs or
sections. But for our simple editing needs, | will limit
it to words and lines. You can also specify how many
objects you want the command to operate on. To
make the whole line the object, you repeat the
command cc dd or yy.

Examples:

5cw change the next 5 words. this deletes the next
five words and allows you type in some new
ones.

3dd delete 3 lines starting with the current line.

2yw copy the next 2 words starting at the cursor,
not necessarily at the beginning of the word.

4yy copy the current line and the next 3 lines

Insert mode is entered by typing one of the following
commands: a, A, ¢, C,i,l,0,0, R, s orS. You will
then see - - INSERT - - at the bottom left of the
screen. These commands allow you to append,
change, insert, replace or substitute text or open up
a new line to type in some text. When users had to
make do with a rather unforgiving dumb terminal,
most of these options would have been welcomed.
Today's desktop computer keyboard interface is
rather more sophisticated and standardized.

With the movement keys outlined above, we can
quickly move to the part of the text that we need to
modify, and press i to enter insert mode. We can
now begin typing new text. Press the insert key on

the keyboard to toggle overwrite mode. You will
notice the "- - INSERT - -" at the bottom changes to
"- - REPLACE - -", or use the delete key to remove
text.

If you are using the more advanced vim, which |
would recommend if you have a choice (and
PCLinuxOS users do have this choice), you can
activate a visual highlighting mode, which can be
character-wise, line-wise or block-wise. Press the
escape key to get into command mode, and press v.
You are now in character-wise visual mode, and text
under the cursor is highlighted as you move around.
Uppercase V puts you in line-wise mode and full
lines only can be highlighted. Ctrl-v enters block-
wise mode. Here a rectangle of text is highlighted as
you move across and up or down. A simple
experiment in each of the three modes will
demonstrate this much more easily than | could
describe the effects.

With the text highlighted, you can issue the ¢, d or y
commands, with the ¢ command automatically
putting you in insert mode to type in the replacement
text.

This brief introduction to vi will allow you to perform
almost all of the editing that you will ever need to do
on the command line. Obviously, if you learn some
more of the available commands, then your editing
will become even more efficient. But this is enough
to get you out of trouble when things aren't going so
well, or to enable you to edit files like crontab or
sudoers.

Midnight Commander

One of the most useful utilities for the command line
user is Midnight Commander. For those of you who
aren't familiar with it, I'll explain. Midnight
Commander is a two panel file manager, very similar
to KDE's Krusader. The main difference is that it is
entirely text based and used from a terminal. It
provides a graphical interface to most file system
management tasks, using elements from the
ncurses and S-lang libraries to provide the text
drawn graphics. The application is extremely
customizable, and it is installed by default in most
full variants of PCLinuxOS. It will also be found in
most other Linux distributions. Mouse interaction is
supported and works fine in a terminal emulator
under a windowing system. But for use in a 'true’
terminal, as you will get by typing Ctrl-Alt-F2, you will
need to install the gpm mouse server from the
repositories. Midnight Commander includes a text
file viewer and an excellent editor, and can be used
over remote connections. Midnight Commander will
also let you look inside compressed files and rpm
packages by simply pressing enter when the file is
highlighted.

Midnight Commander (hereafter referred to as MC)
can be started from the command line by simply
typing me. It is intuitive enough to be used
immediately by even the newest Linux user. You
may be wondering why | have not introduced such a
wonderful time saving utility before now, and why
you have had to jump through hoops in an unfriendly
and often unforgiving environment to achieve even
the simplest file system commands, such as copying
and moving files. Quite simply, you have now seen
the interior workings of the Linux system and are

()

more able to take full advantage of it, and to
understand the many advanced features, which
many users do not comprehend or miss completely.

By default you will start with a screen like this:

'n Name ! a Size |Modify time
i [/ UP--DIR Feb 6 09:24
/Desktop 4096 |Mar 26 13:45
/Documents 4096 |Feb 6 10:23
/Movies vies 4096 |Feb 27 2007
/Music 4096 |Feb 26 2007
/Pictures 4896 |Jun 14 15:33 4096 |Jun 14 15:33
4096 [Nov 11 2009

4096 Jun 2 -

5[Nov 1
Fe

/mydir 4096 Nov 11 2009
/mydirl 2 16:2

The top line is a drop down menu bar, accessible
with the mouse or by pressing F9 and then the arrow
keys. Directly below are the two panels that are split
vertically by default, but can be changed to
horizontal from the configuration menu. Then left
and right on the top line will read above and below
. At the bottom of each panel is a status bar, which
displays some file information and file system usage
(default). Next down is the command line. Anything
entered from the keyboard that is not interpreted as
a command to MC goes here, and enter sends it to
the shell for processing. The bottom line is a set of
buttons corresponding to the Function keys, but they
are also mouse clickable. The panels are overlaid on
the output screen, and can be toggled on or off by
pressing Ctrl-o (that's letter o, not zero). You may
want to do this to see, for example, the output of a
command executed from the command line window.

Anything that you type in MC is examined to check
whether it is a MC command. If it's not, it is passed
to the shell to be dealt with. There are a lot of
commands in MC and shortcuts to them are shown
in the drop down menus like this:

Ctrl-u hold down control and press u - this one
swaps the panels over

Ctrl-x ¢ hold down control, press X, release both
and type c - brings up the chmod dialog

Meta-? hold down the meta key, more usually
known as the Alt key, and type ? bring up the find file
dialog.

Basic configuration is done through a menu found
under options on the top menu bar. Drop this menu
down and press Enter on the configuration entry.
You will get a dialog like this:

Configure options

r Panel options r Other options

[l] Use SI size units [%x] Mkdir autoname
[x] show Backup files [x] Verbose operation
[1 show Hidden files [x] Compute Totals
[x] maRk moves down [x] shell Patterns

[1 Drop down menus [1 Auto save setup

[] miX all files [] auto mEnus

[1 Fast dir reload [x] use internal edIt

[x] Use internal view
[1 coMplete: show all

r Pause after run... — [x] rotatinG dash
{) Never [%] Lynx-1ike motion
(*) on dumb Terminals [x] cd follows linKs
{) Always [] safe delLete
[« 0K =] [Save] [Cancel]

Use the arrow keys to move around, and press the
space bar to add or remove an option, or hold down
the Alt key and press the letter in blue. Most of the

options can safely be left at their default settings. |
prefer to not show hidden files unless necessary,
as they are hidden for good reason. | also
recommend checking Lynx-like motion. Lynx is a
text only web browser which uses the arrow keys for
navigation through links, and this option allows you
to move up or down through highlighted directories
by using the left and right arrow keys. The shell
Patterns option, when checked, uses search
patterns such as wild cards, as you would use in
shell 'globbing." Unchecked, it uses the full power of
regular expressions, which makes it an extremely
powerful tool. If you need more help on the other
options, F1 will bring up a fairly comprehensive help
system.

For most operations, you will want to have the two
panels showing the contents of two different
directories, perhaps source and destination
directories for copy and move operations. Switch
between panels with the tab key, and select files by
tagging them with Ctrl-t or the insert key. F5 copies
selected files from the active panel to the other
panel by default, but pops up a dialog box to allow
you to change this. F6 moves them across, with the
option to rename the file, and F8 deletes them.
While a file is highlighted (not tagged), pressing F3
displays the contents where practical, and F4 opens
it in the editor, although you must have write
permission to save any edits to the file.

If you find that you need to frequently drill down
down to a directory buried deep within the file
system, you can add it to the hot-list dialog. type
Ctrl-\ and select add current (Alt-a). You will be
prompted for a name for the entry. The full path-
name will already be there if you want to use it. Want

)

to go home? Type cd, (the letters go into the
command line box as you type), then press Enter
and the active panel will show your home directory.

The panels are not limited to displaying a directory
listing. By dropping down the left or right menus
(F9),

Left File Comms
File listing

(uick view

Info

Tree

Listing mode...

Sort order...
Filter...
Encoding...

FTP link...
Shell link...

you have the option to change the display in that
panel to the contents of the currently highlighted file
in the other panel, or to display a heap of information
about the file. It can also be set to display the file
system in a tree like structure. If you keep the
directory listing, the same menu will allow you to
select the amount of detail shown similar to the -a,
and -l options of the Is command. Or you can set up
a custom display to show exactly what you need.

The listing can be sorted in any way you like as
shown below.

Sort order

() Unsorted [1 Executable first
[x] Case sensitive
() Version [] Reverse
{) Extension
{ } Size
() Modify time
() Access time
{) Change time
() Inode
[= 0K =] [cancel]

You can set up a filter to show only files that match a
pattern. The rescan option, Ctrl-r, refreshes the
contents of the active panel if the contents have
changed since the directory was entered.

The ftp and shell link options are one of the
cleverest parts of MC. They allow you to display the
contents of a directory on a remote system, and let
you havigate around as though it was on your own
hard drive.

Try this:

Set the right panel to quick view.

Tab back to the left panel and drop down the left
menu.

Select ftp link ...

Enter ftp.nic.funet.fi in the dialog box that appears.

FTP to machine
Enter machine name (F1 for details):

[=< 0K =] [Cancel]

Name Size |Modify time

UP--DIR Jul 31 11:41|#
/dev 14 Mar 2 09:51

/ftp 3|sep 25 2009 |t.fi
/incoming 16 Sep 25 2007
/index 127 Mar 12 12:20| |#
/pub 59 Mar 29 2006 |#
/rfc 5837|Jan 14 2010 h1

*fav

On the right hand panel are displayed the contents
of the highlighted file in the left panel. The files
shown in the left panel are on a file server in
Finland. Funet is the Finnish University and
Research Network. You can freely browse any
directories for which you have been granted access,
and you may read or copy documents to your own
home directory. It's a great research tool. Try
opening the publ directory. You can even add it to
your directory hotlist (ctrl-\), and give it a nicer name
for quick future access.

There are hundreds of free ftp sites that can be
accessed in this manner. If you want to download
software or a live cd image, | would recommend a
dedicated ftp client application, such as gFTP, or the
ftp capabilities of a decent web browser.

e

To use the shell link... option to connect to another
machine on the local network, make sure that the
letclhosts file contains a line with the IP address
and host name of the remote computer to allow
address translation. In the dialog that is presented
when you select shell link... from the menu, type in
something along the lines of jane@daisy. You may
then be asked for Jane's password before being
granted access to the machine as Jane.

When you enter a directory with lots of files and sub-
directories, you can home in rapidly with the quick
search function, Ctrl-s. Try navigating to the /etc
directory and type Ctrl-s fs. You will be taken
straight to the letclfstab file, where you can press
F3 to view the contents, or F4 to edit it.

Under the file menu are options to perform most of
the file handling commands that you would normally
carry out on the command line. For example, to
create a symbolic link in the right panel to a file in
the left panel, simply select Symlink, and a dialog is
shown with the defaults already filled in. Press Enter
to accept or change the symlinks name to your
preference.

At the bottom of the file menu are a group of
commands to tag a group of files according to a
pattern. As an example, if shell patterns are
disabled, then a pattern such as M.bash.* in your
home directory will tag all of your (hidden) bash

related files ready to be copied to a backup directory.

Pressing the F2 key brings up the user menu. What
this shows depends upon the contents of the file

~/.mc.menu, and you can edit the file to your hearts
content to customize the menu. Open up the default

menu, and you will see just how complex you can
make the menu commands. But simple commands
are also acceptable.

There is a simple find files dialog accessible from the
command drop down menu or by pressing M-? This
is pretty easy to use, with a space for the start
directory, which can be filled by selecting a directory
from the Tree option and spaces for the search
criteria, which may be either the file name or
content. Both can use either shell expansions or
regular expressions. When the list of files is
displayed, you have the option to 'panelize' them,
which means display them in the active panel for
further processing. To get back the previous
contents of the panel, use the refresh Ctrl-r
command. This is an excellent place to practice your
regular expression skills, with the Again option
taking you back to the pattern for modification or
refinement if the results are not what you expected.

If you need even more power, the External Panelize
command will provide it. This is activated from the
command drop down menu, or Crtl-x !. This
command allows you to execute an external
command, and to put the results into the active
panel. You can even save regularly used commands
under a friendly name.

Also available from the command drop down menu
is the directory tree command, which displays a
dialog showing the file system in a tree like structure,
and changes the function key definitions at the
bottom of the screen. F4 or Rescan refreshes the
tree display. F3 temporarily removes a directory from
the display. This useful when there are lots and lots
of sub-directories making navigation difficult. F4

toggles between static and dynamic tree
navigation. Play around with it and you'll see the
difference. Pressing the enter key on any directory
closes the dialog and switches the active panel to
that directory.

To compare the contents of two files that you have
been editing, select one file in the left panel, and the
other in the right. Then, from the command drop
down menu, select view diff files and a new, two
panel window will open, showing the contents of
both files, with the differences highlighted

If you need to keep two directories synchronized, the
Compare directories, or Ctrl-x d, is a boon. With
one of each of the directories in its own panel,
execute the command, and you will be prompted for
the type of comparison to make, and the files that
differ will be tagged on both sides. You can then
simply copy the tagged files across with the F5 key.

(=)

Command Line Interface Intro: Part 12

When you open a file in the editor or viewer, or
compare two files, a new screen is shown. MC can
have multiple screens open at any time, and you can
switch between them as you wish, using these
commands:

Alt-} forward one screen

Alt-{ back one screen

Alt-" list the open screens (that's the back
tick)

Unfortunately, you may only have one file listing
screen open at a time.

If you forget to close an open screen and try to
leave, MC will issue a warning.

If you think that | have done a comprehensive job of
covering the features in MC, then you are not even
close. I've only covered the features that | regularly
use. Read the help files and you will find a lot more
to play with.

Playtime

When you are working in a text only terminal, either
because you are trying to achieve a command line
oriented goal, are simply locked out of your beloved
X windowing system temporarily, or just because
you want to, (sadly), you don't have to sit there in
monastic silence.

There is a widely available tool known as sox, which
is an incredibly powerful audio application with a
bewildering array of options. It recognizes most

Iux0S

T T ™" R4dica ﬂ Simple

audio formats, can play back or record, add effects,
split, combine and do just about anything that a
reasonable person would wish to do with, or to, an
audio file.

If you are so inclined, then please, be my guest.
Read the manuals and produce your masterpiece.
Personally, | would much rather use a graphical
application, such as audacity, to perform such
magic.

sox can be called in one of three incarnations:

SOoX the full version
play the play back part and
rec the recording function part.

Let's concentrate on play.

To simply have some music while you work, you can
call play -v {number} {song}. The -v option controls
the volume and number is a real number, the
default being 1. Enter 0.5 for playback at half
volume, 2 for double the default volume, or normal
volume and so forth. Be warned that entering too
high of a number may damage your hardware or
ears.

Here's a little script that will allow you to have your
favorite music playing while you work. It expects a
folder containing compatible music files on the
command line as a play list. This version looks for
mp3 files and plays them back at half volume. Edit it
to your own preferences.

Open a virtual terminal with Ctrl-Alt-F2 and run the
script. Use Ctrl-Alt-F3 to open another terminal to
do your work. Enjoy!

#I1/bin/bash

play-it-sam.sh

play a folderfull of files consecutively
r while working on the command line

if [$2 1=1 1]
then

echo Usage: you need to pass me a directory

echo That contains some mp3 files
echo So that I can play them

echo

exit @

fi

for song in $1/%_mp3
do “play -v 8.5 "$song"’
done

Call it with a command like ~/Iplay-it-sam.sh
Idata/Music/The-Whol (so, | like 60's pop, okay?).

The script could use a little more error checking, and
has the potential to provide more functions, such as
volume control. I'll leave that to you. If you make any
significant improvements, and | am sure that you
can, | would be interested in seeing them.

Where to next?

If you want to stop right here, that is fine, What |
have covered in this introduction is more than
enough to lift you out of the 'newbie’ class, and will
almost certainly cover most of what the average user
needs to make efficient use of the command line.

Should you wish to delve a little deeper, there are
several ways to do this.

Almost all of the commands include some sort of
documentation as part of the installation. As a
minimum you can follow the command with - - help,
which will usually give you some idea of the usage,
along with the available options of the command.

Most commands are also documented in the man
pages, a special type of built in help system. The
manual pages are not always installed by default in
every distribution, but are almost certainly available
from the software repositories, and are well worth
installing. If a man page is not available from the
repository for a given command, try
http://linuxmanpages.com/. It's a great resource.

The manual pages are accessed by typing man
command, where command is the name of the
command you are interested in.

As a reference, they are invaluable. But they are not
very beginner friendly, although the information that
they contain is usually accurate. If you see a
reference to a man page, it is often followed by a
number. This is the section number. For
convenience, the manual pages are organized into
sections, but the number is optional. The sections
include:

user commands
system calls
library functions
special files

file formats
games

ocoakrwbpE

7. conventions and miscellany
8. administration and privileged commands

When the man command fails to provide sufficient
information, use the info command. The content is
similar to the manual pages but often much more
detailed. Unfortunately, the info command's user
interface is terrible so remember this: type q to quit,
and type h for help.

That should get you by.

There is, of course, lots of information available on
the internet, but beware that some of it may be
inaccurate. The most reliable source is LDP - the
Linux documentation project (http://www.tldp.org).
Here you will find a wealth of information on all
things Linux, in a variety of formats and languages.

Another reliable online source is The Linux Gazette
(http://linuxgazette.net/), with all back issues
available in the archives. The Gazette has been
around since 1995.

If you prefer a good, old-fashioned book, then you
will be spoiled for choice, as there are literally
thousands of them available. Which to choose can
be a headache and a kind of lottery. My personal
experience is that you can't go far wrong with the
excellent O'reilly series of Linux reference titles.
They are usually well written, reliably factual, and
durable. | have a 10 year old copy of Linux in a
nutshell that shows little sign of wear despite the
years of rummaging through its 600 odd pages).

PCLinuxOS users are fortunate enough to have their
own magazine, which is an excellent source of
distribution-centric information. All previous issues
are available for free download.

Last, but not least, there is the PCLinuxOS forum. If
you can't find a solution to your problem, then ask
there and surely one or more of the friendly resident
experts will help. Even Texstar, the distribution's
main man, is a regular contributor there.

The only other thing you need to become more
proficient is practice. Only you can provide that. The
more that you use the methods outlined in this
introduction, the easier you will find them to use.
Reading about a command is fine. But to understand
it fully, you must use it regularly.

Editor's Note: This, the 12th installment of the Command
Line Interface Intro article series, is also the last. Critter,
a.k.a. Pete Kelly, has provided us, the PCLinuxOS
community, an outstanding tutorial on how to use the
command line. If you have followed along, I'm sure that
you have discovered just how powerful the Linux
command line truly is, and how easy it can be.

Critter is not, however, "going away." He has agreed to
stay on and write additional articles for The NEW
PCLinuxOS Magazine. You will be seeing more from him
in the coming months.

Meanwhile, we will be publishing a special edition of The
NEW PCLinuxOS Magazine, containing all of Pete's

excellent Command Line Interface Intro articles, in order
from the first article, up to and including this final article.

101

http://linuxmanpages.com
http://www.tldp.org
http://linuxgazette.net
http://pclosmag.com/index.php/downloads

If you are (or get) serious about learning the Linux
command line, then the special edition would serve as an
excellent starting point, not to mention an excellent
reference resource. Watch for it, coming soon.

Thank you, Pete, for all of your hard work in producing
this outstanding tutorial series for The NEW PCLinuxOS
Magazine.

Paul Arnote, PCLinuxOS Magazine Chief Editor

The NEW PCLinuxOS Magazine

Created with Scribus 1.3.7

LinPClus

07:36 rM

JB4OE &N

Changchun, CHINA
km/h
7°C o

feels like

Rain

T

http://www.scribus.net
http://www.linpc.us

